Skip to main content
Log in

Cold-Set Gelation of Soybean and Amaranth Proteins by Hydration of Freeze-Dried Protein Previously Denatured in the Presence of Calcium

  • Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The gelation of soybean and amaranth proteins through a three-step-strategy: heat-induced denaturation at low protein content (2 or 4 wt%) in the presence of calcium (0.075–0.250 mmol Ca/g protein) and at pH 7.0, followed by freeze drying, and rehydration at higher protein content (10 or 13 wt%) was evaluated for mixtures 80:20 (soybean:amaranth) and for soybean proteins alone. Gelation was favored by high protein contents during denaturation and rehydration, and by a Ca2+:protein ratio of 0.100 mmol Ca/g protein. Gels were soft (hardness from texture profile analysis was 0.26 N) and self-supporting and exhibited excellent water-holding capacity (99% upon centrifugation at 20,000xg). The aggregates formed during denaturation were weakly associated upon rehydration and were mostly extractable with water, which partially explained the softness of gels. The appropriate Ca2+:protein ratio would lead to a particular distribution of Ca2+ between free in solution and bound to proteins, which in turn balanced associations and repulsions allowing gelation. The presence of 20% amaranth proteins led to a more brownish color, a higher adhesiveness and a lower cohesiveness (texture), lower storage modulus, apparent viscosity, consistency index, and area of hysteresis (rheology) when compared to gels containing only soybean proteins. The mechanical differences suggest that soybean proteins dominated the three-dimensional matrix while amaranth proteins were less engaged and acted as a filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author [FS], upon reasonable request.

References

  1. K. Nishinari, Y. Fang, S. Guo, G.O. Phillips, Food Hydrocoll. (2014). https://doi.org/10.1016/j.foodhyd.2014.01.013

    Article  Google Scholar 

  2. M.M. García de Oliveira, K. de Souza, M.A. Mauro, Food Biophys. (2021). https://doi.org/10.1007/s11483-020-09659-3

    Article  Google Scholar 

  3. A.E. Nardo, S. Suárez, A.V. Quiroga, M.C. Añón, Front. Plant Sci. (2020). https://doi.org/10.3389/fpls.2020.578631

    Article  PubMed  PubMed Central  Google Scholar 

  4. S. Gorinstein, E. Pawelzik, E. Delgado-Licon, R. Haruenkit, M. Weisz, S. Trakhtenberg, J. Sci. Food Agric. (2002). https://doi.org/10.1002/jsfa.1120

    Article  Google Scholar 

  5. P. Qin, T. Wang, Y. Luo, J. Agric. Food Res. (2022). https://doi.org/10.1016/j.jafr.2021.100265

    Article  Google Scholar 

  6. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium, Dietary Reference Intakes for Calcium and Vitamin D, ed. by A.C. Ross, C.L. Taylor, A.L. Yaktine, H.B. Del Valle (National Academies Press (US), 2011)

  7. Y. Peng, K. Kyriakopoulou, J.K. Keppler, P. Venema, A.J. van der Goot, Food Hydrocoll. (2022). https://doi.org/10.1016/j.foodhyd.2021.107191

    Article  Google Scholar 

  8. M.V. Avanza, M.C. Puppo, M.C. Añón, Food Hydrocoll. (2005). https://doi.org/10.1016/j.foodhyd.2004.12.002

    Article  Google Scholar 

  9. K. Shevkani, N. Singh, J.C. Rana, A. Kaur, Int. J. Food Sci. Technol. (2014). https://doi.org/10.1111/ijfs.12335

    Article  Google Scholar 

  10. T. Nicolai, C. Chassenieux, Curr. Opin. Food Sci. (2019). https://doi.org/10.1016/j.cofs.2019.04.005

    Article  Google Scholar 

  11. A. Maltais, G.E. Remondetto, R. Gonzalez, M. Subirade, J. Food Science: Food Chem. Toxicol. (2005). https://doi.org/10.1111/j.1365-2621.2005.tb09023.x

    Article  Google Scholar 

  12. L. Carrasco-Peña, L.A. Osuna-Castro, A. De León Rodríguez, N. Maruyama, J.F. Toro-Vazquez, J.A. Morales-Rueda, Barba De La Rosa, J. Agric. Food Chem. (2013). https://doi.org/10.1021/jf3050999

    Article  Google Scholar 

  13. S. Guidi, F.A. Formica, C. Denkel, Food Res. Int. (2022). https://doi.org/10.1016/j.foodres.2022.111752

    Article  PubMed  Google Scholar 

  14. A. Maltais, G.E. Remondetto, M. Subirade, Food Hydrocoll. (2008). https://doi.org/10.1016/j.foodhyd.2007.01.026

    Article  Google Scholar 

  15. A.A. Hugo, P.F. Pérez, M.C. Añón, F. Speroni, Food Hydrocoll. (2014). https://doi.org/10.1016/j.foodhyd.2013.10.025

    Article  Google Scholar 

  16. L. Piccini, A. Scilingo, F. Speroni, F Biophysics. (2019). https://doi.org/10.1007/s11483-018-9558-z

    Article  Google Scholar 

  17. M. Corredig, in Ingredient Interactions Effects on Food Quality, ed. by A.G. Gaonkar, A. McPherson (Taylor & Francis, 2006), p. 283

  18. A. Kharlamova, T. Nicolai, C. Chassenieux, Food Res. Int. (2018). https://doi.org/10.1016/j.foodhyd.2017.11.049

    Article  Google Scholar 

  19. R.D. Kroll, Cereal Chem. 61, 490 (1984)

    CAS  Google Scholar 

  20. I. Asakereh, K. Lee, O.A. Francisco, M. Khajehpour, ChemPhysChem (2022). https://doi.org/10.1002/cphc.202100884

    Article  PubMed  Google Scholar 

  21. M.C. Puppo ,M.C., Añón, Food Hydrocoll. (1999) https://doi.org/10.1016/S0268-005X(98)00079-4

  22. F. Speroni, M.C. Añón, M. de Lamballerie, Food Res. Int. (2010). https://doi.org/10.1016/j.foodres.2010.03.022

    Article  Google Scholar 

  23. M. Boström, F.W. Tavares, S. Finet, A. Skouri-Paneta, A. Tardieu, B.W. Ninham, Biophys. Chem. (2005). https://doi.org/10.1016/j.bpc.2005.05.010

    Article  PubMed  Google Scholar 

  24. E. Derbyshire, D.J. Wright, D. Boulter, Phytochemistry (1976). https://doi.org/10.1016/S0031-9422(00)89046-9

    Article  Google Scholar 

  25. A. Quiroga, E.N. Martínez, H. Rogniaux, A. Geairon, M.C. Añón, Protein J. (2009). https://doi.org/10.1007/s10930-009-9214-z

    Article  PubMed  Google Scholar 

  26. A. Quiroga, E.N. Martínez, H. Rogniaux, A. Geairon, M.C. Añón, J. Agric. Food Chem. (2010). https://doi.org/10.1021/jf103296n

    Article  PubMed  Google Scholar 

  27. J.L. Ventureira, A.J. Bolontrade, F. Speroni, E. David-Briand, A. Scilingo, M.H. Ropers, F. Boury, M.C. Añón, M. Anton, LWT (2012). https://doi.org/10.1016/j.lwt.2011.07.024

    Article  Google Scholar 

  28. C.A. Manassero, E. David-Briand, S.R. Vaudagna, M. Anton, F. Speroni, Food Bioprocess Technol. (2018). https://doi.org/10.1007/s11947-018-2084-7

    Article  Google Scholar 

  29. AOAC, Official methods of analysis, 15th edn. (Association of Official Analytical Chemists, Washington, 1990)

    Google Scholar 

  30. F. Peyrano, M. de Lamballerie, M.V. Avanza, F. Speroni, Food Hydrocoll. (2021). https://doi.org/10.1016/j.foodhyd.2020.106191

    Article  Google Scholar 

  31. X.D. Sun, S.D. Arntfield, Food Hydrocoll. (2012). https://doi.org/10.1016/j.foodhyd.2011.12.014

    Article  Google Scholar 

  32. O.H. Lowry, N.J. Rosebrough, L.A. Farr, R.J. Randall, J. Biol. Chem. (1951). https://doi.org/10.1016/s0021-9258(19)52451-6

    Article  PubMed  Google Scholar 

  33. T.G. Mezger, The Rheology Handbook, 5th edn. (Vincentz Network GmbH & Co. KG, Hanover, 2020), pp. 198–199

  34. M.C. Bourne, Food Technol. 32, 62–66 (1978)

    Google Scholar 

  35. A.M. Hermansson, J. Am. Oil Chem. Soc. (1986). https://doi.org/10.1007/BF02638232

    Article  Google Scholar 

  36. N. Chen, C. Chassenieux, T. Nicolai, Food Res. Int. (2018). https://doi.org/10.1016/j.foodhyd.2017.09.021

    Article  PubMed  Google Scholar 

  37. X. Li, Y. Li, Y. Hua, A. Qiu, C. Yang, S. Cui, Food Chem. (2007). https://doi.org/10.1016/j.foodchem.2007.02.003

    Article  PubMed  Google Scholar 

  38. T. Phan-Xuan, D. Durand, T. Nicolai, L. Donato, C. Schmitt, L. Bovetto, Food Hydrocoll. (2014). https://doi.org/10.1016/j.foodhyd.2012.09.008

    Article  Google Scholar 

  39. J. Yan, L. Yin, Y. Qu, Y. Wenjia, M. Zhang, J. Su, X. Jia, Food Hydrocoll. (2022). https://doi.org/10.1016/j.foodhyd.2022.107997

    Article  Google Scholar 

  40. X. Wang, M. Zeng, F. Qin, B. Adhikari, Z. He, J. Chen, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.09.044

    Article  PubMed  PubMed Central  Google Scholar 

  41. L. Zheng, F. Teng, N. Wang, X.N. Zhang, J.M. Regenstein, J.S. Liu, Y. Li, Z.J. Wang, Appl. Sci. (Switzerland) (2019). https://doi.org/10.3390/app9061076

    Article  Google Scholar 

  42. T. Furukawa, S. Ohta, Agric. Biol. Chem. (1983). https://doi.org/10.1271/bbb1961.47.751

    Article  Google Scholar 

  43. M.C. Puppo, C.E. Lupano, M.C. Añón, J. Agric. Food Chem. (1995). https://doi.org/10.1021/jf00057a008

    Article  Google Scholar 

  44. Z.Y. Ju, A. Kilara, J. Food Sci. (1998). https://doi.org/10.1111/j.1365-2621.1998.tb15728.x

    Article  Google Scholar 

  45. M.V. Avanza, M.C. Añón, J. Sci. Food Agric. (2007). https://doi.org/10.1002/jsfa.2751

    Article  Google Scholar 

  46. H. Zhao, W. Li, F. Qin, J. Chen, Int. J. Food Sci. Technol. (2016). https://doi.org/10.1111/ijfs.13010

    Article  Google Scholar 

  47. J. Zhang, L. Liang, Z. Tian, L. Che, M. Subirade, Food Chem. (2012). https://doi.org/10.1016/j.foodchem.2012.01.049

    Article  PubMed  Google Scholar 

  48. K. Shimada, J.C. Cheftel, J. Agric. Food Chem. (1988). https://doi.org/10.1021/jf00079a038

    Article  Google Scholar 

  49. A.C. Alting, R.J. Hamer, C.G. de Kruif, R.W. Visschers, J. Agric. Food Chem. (2000). https://doi.org/10.1021/jf000474h

    Article  PubMed  Google Scholar 

  50. N. Maruyama, T. Fukuda, S. Saka, N. Inui, J. Kotoh, M. Miyagawa, M. Hayashi, M. Sawada, T. Moriyama, S. Utsumi, Pytochemistry (2003). https://doi.org/10.1016/s0031-9422(03)00385-6

    Article  Google Scholar 

  51. B. Song, N.W. Oehrle, S. Liu, H.B. Krishnan, J. Agric. Food Chem. (2016). https://doi.org/10.1021/acs.jafc.6b03677

    Article  PubMed  Google Scholar 

  52. S. Petruccelli, M.C. Añón, J. Agric. Food Chem. (1995). https://doi.org/10.1021/jf00060a009

    Article  Google Scholar 

  53. A.A. Scilingo, M.C. Añón, J. Am. Oil Chemists’ Soc. (2004). https://doi.org/10.1007/s11746-004-0858-y

    Article  Google Scholar 

  54. M.F. Hamet, J.A. Piermaria, A.G. Abraham, LWT Food Sci. Technol. (2015). https://doi.org/10.1016/j.lwt.2015.03.097

    Article  Google Scholar 

  55. D.M. Folkenberg, P. Dejmekc, A. Skriver, H. Skov Guldager, R. Ipsen, Int. Dairy J. (2006). https://doi.org/10.1016/j.idairyj.2004.10.013

    Article  Google Scholar 

  56. C. Wu, T. Wang, C. Ren, W. Ma, D. Wu, X. Xu, L.S. Wang, M. Du, Compr. Rev. Food Sci. Food Saf. (2018). https://doi.org/10.1111/1541-4337.12682

    Article  PubMed  Google Scholar 

  57. D. Gabrielle, B. de Cindio, P. D’Antona, Rheol. Acta (2001). https://doi.org/10.1007/s003970000139

    Article  Google Scholar 

  58. X. Yang, C. Ke, L. Li, J. Food Eng. (2021). https://doi.org/10.1016/j.jfoodeng.2020.110243

    Article  Google Scholar 

  59. S. Petruccelli, M.C. Añón, J. Agric. Food Chem. (1995). https://doi.org/10.1021/jf00055a004

    Article  Google Scholar 

  60. M.V. Chandra, B.A. Shamasundar, Int. J. Food Prop. (2014). https://doi.org/10.1080/10942912.2013.845787

    Article  Google Scholar 

  61. B.J. Dobraszczyk, J. Texture Stud. (1997). https://doi.org/10.1111/j.1745-4603.1997.tb00108.x

    Article  Google Scholar 

  62. T.C. Brito-Oliveira, M. Bispo, I.C.F. Moraes, O.H. Campanella, S.C. De Pinho, Food Biophys. (2018). https://doi.org/10.1007/s11483-018-9529-4

    Article  Google Scholar 

  63. F. Peyrano, M. de Lamballerie, M.V. Avanza, F. Speroni, Food Hydrocoll. (2022). https://doi.org/10.1016/j.foodhyd.2021.107220

    Article  Google Scholar 

  64. S.H. Guzmán-Maldonado & O. Paredes-López, in Functional foods: biochemical and processing aspects ed. by G. Mazza, (C.R.S. Press, 1998), p. 293

Download references

Acknowledgements

The authors wish to thank María Fernanda Hamet for her kind and thorough technical assistance.

Funding

This work was supported by the CONICET (PIP 2021–2023 1147).

Author information

Authors and Affiliations

Authors

Contributions

A.M.: Methodology, Validation, Formal analysis, Investigation, Data Curation, J.P.: Conceptualization, Methodology, Investigation, Resources, Data Curation, Writing – Review & Editing, Supervision, Funding acquisition F.S.: Conceptualization, Methodology, Investigation, Project administration, Data Curation, Writing – Review & Editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Francisco Speroni.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinacci, A., Piermaria, J. & Speroni, F. Cold-Set Gelation of Soybean and Amaranth Proteins by Hydration of Freeze-Dried Protein Previously Denatured in the Presence of Calcium. Food Biophysics 19, 284–297 (2024). https://doi.org/10.1007/s11483-023-09822-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-023-09822-6

Keywords

Navigation