Abstract
The gelation of soybean and amaranth proteins through a three-step-strategy: heat-induced denaturation at low protein content (2 or 4 wt%) in the presence of calcium (0.075–0.250 mmol Ca/g protein) and at pH 7.0, followed by freeze drying, and rehydration at higher protein content (10 or 13 wt%) was evaluated for mixtures 80:20 (soybean:amaranth) and for soybean proteins alone. Gelation was favored by high protein contents during denaturation and rehydration, and by a Ca2+:protein ratio of 0.100 mmol Ca/g protein. Gels were soft (hardness from texture profile analysis was 0.26 N) and self-supporting and exhibited excellent water-holding capacity (99% upon centrifugation at 20,000xg). The aggregates formed during denaturation were weakly associated upon rehydration and were mostly extractable with water, which partially explained the softness of gels. The appropriate Ca2+:protein ratio would lead to a particular distribution of Ca2+ between free in solution and bound to proteins, which in turn balanced associations and repulsions allowing gelation. The presence of 20% amaranth proteins led to a more brownish color, a higher adhesiveness and a lower cohesiveness (texture), lower storage modulus, apparent viscosity, consistency index, and area of hysteresis (rheology) when compared to gels containing only soybean proteins. The mechanical differences suggest that soybean proteins dominated the three-dimensional matrix while amaranth proteins were less engaged and acted as a filler.





Similar content being viewed by others
Data Availability
The data that support the findings of this study are available from the corresponding author [FS], upon reasonable request.
References
K. Nishinari, Y. Fang, S. Guo, G.O. Phillips, Food Hydrocoll. (2014). https://doi.org/10.1016/j.foodhyd.2014.01.013
M.M. García de Oliveira, K. de Souza, M.A. Mauro, Food Biophys. (2021). https://doi.org/10.1007/s11483-020-09659-3
A.E. Nardo, S. Suárez, A.V. Quiroga, M.C. Añón, Front. Plant Sci. (2020). https://doi.org/10.3389/fpls.2020.578631
S. Gorinstein, E. Pawelzik, E. Delgado-Licon, R. Haruenkit, M. Weisz, S. Trakhtenberg, J. Sci. Food Agric. (2002). https://doi.org/10.1002/jsfa.1120
P. Qin, T. Wang, Y. Luo, J. Agric. Food Res. (2022). https://doi.org/10.1016/j.jafr.2021.100265
Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium, Dietary Reference Intakes for Calcium and Vitamin D, ed. by A.C. Ross, C.L. Taylor, A.L. Yaktine, H.B. Del Valle (National Academies Press (US), 2011)
Y. Peng, K. Kyriakopoulou, J.K. Keppler, P. Venema, A.J. van der Goot, Food Hydrocoll. (2022). https://doi.org/10.1016/j.foodhyd.2021.107191
M.V. Avanza, M.C. Puppo, M.C. Añón, Food Hydrocoll. (2005). https://doi.org/10.1016/j.foodhyd.2004.12.002
K. Shevkani, N. Singh, J.C. Rana, A. Kaur, Int. J. Food Sci. Technol. (2014). https://doi.org/10.1111/ijfs.12335
T. Nicolai, C. Chassenieux, Curr. Opin. Food Sci. (2019). https://doi.org/10.1016/j.cofs.2019.04.005
A. Maltais, G.E. Remondetto, R. Gonzalez, M. Subirade, J. Food Science: Food Chem. Toxicol. (2005). https://doi.org/10.1111/j.1365-2621.2005.tb09023.x
L. Carrasco-Peña, L.A. Osuna-Castro, A. De León Rodríguez, N. Maruyama, J.F. Toro-Vazquez, J.A. Morales-Rueda, Barba De La Rosa, J. Agric. Food Chem. (2013). https://doi.org/10.1021/jf3050999
S. Guidi, F.A. Formica, C. Denkel, Food Res. Int. (2022). https://doi.org/10.1016/j.foodres.2022.111752
A. Maltais, G.E. Remondetto, M. Subirade, Food Hydrocoll. (2008). https://doi.org/10.1016/j.foodhyd.2007.01.026
A.A. Hugo, P.F. Pérez, M.C. Añón, F. Speroni, Food Hydrocoll. (2014). https://doi.org/10.1016/j.foodhyd.2013.10.025
L. Piccini, A. Scilingo, F. Speroni, F Biophysics. (2019). https://doi.org/10.1007/s11483-018-9558-z
M. Corredig, in Ingredient Interactions Effects on Food Quality, ed. by A.G. Gaonkar, A. McPherson (Taylor & Francis, 2006), p. 283
A. Kharlamova, T. Nicolai, C. Chassenieux, Food Res. Int. (2018). https://doi.org/10.1016/j.foodhyd.2017.11.049
R.D. Kroll, Cereal Chem. 61, 490 (1984)
I. Asakereh, K. Lee, O.A. Francisco, M. Khajehpour, ChemPhysChem (2022). https://doi.org/10.1002/cphc.202100884
M.C. Puppo ,M.C., Añón, Food Hydrocoll. (1999) https://doi.org/10.1016/S0268-005X(98)00079-4
F. Speroni, M.C. Añón, M. de Lamballerie, Food Res. Int. (2010). https://doi.org/10.1016/j.foodres.2010.03.022
M. Boström, F.W. Tavares, S. Finet, A. Skouri-Paneta, A. Tardieu, B.W. Ninham, Biophys. Chem. (2005). https://doi.org/10.1016/j.bpc.2005.05.010
E. Derbyshire, D.J. Wright, D. Boulter, Phytochemistry (1976). https://doi.org/10.1016/S0031-9422(00)89046-9
A. Quiroga, E.N. Martínez, H. Rogniaux, A. Geairon, M.C. Añón, Protein J. (2009). https://doi.org/10.1007/s10930-009-9214-z
A. Quiroga, E.N. Martínez, H. Rogniaux, A. Geairon, M.C. Añón, J. Agric. Food Chem. (2010). https://doi.org/10.1021/jf103296n
J.L. Ventureira, A.J. Bolontrade, F. Speroni, E. David-Briand, A. Scilingo, M.H. Ropers, F. Boury, M.C. Añón, M. Anton, LWT (2012). https://doi.org/10.1016/j.lwt.2011.07.024
C.A. Manassero, E. David-Briand, S.R. Vaudagna, M. Anton, F. Speroni, Food Bioprocess Technol. (2018). https://doi.org/10.1007/s11947-018-2084-7
AOAC, Official methods of analysis, 15th edn. (Association of Official Analytical Chemists, Washington, 1990)
F. Peyrano, M. de Lamballerie, M.V. Avanza, F. Speroni, Food Hydrocoll. (2021). https://doi.org/10.1016/j.foodhyd.2020.106191
X.D. Sun, S.D. Arntfield, Food Hydrocoll. (2012). https://doi.org/10.1016/j.foodhyd.2011.12.014
O.H. Lowry, N.J. Rosebrough, L.A. Farr, R.J. Randall, J. Biol. Chem. (1951). https://doi.org/10.1016/s0021-9258(19)52451-6
T.G. Mezger, The Rheology Handbook, 5th edn. (Vincentz Network GmbH & Co. KG, Hanover, 2020), pp. 198–199
M.C. Bourne, Food Technol. 32, 62–66 (1978)
A.M. Hermansson, J. Am. Oil Chem. Soc. (1986). https://doi.org/10.1007/BF02638232
N. Chen, C. Chassenieux, T. Nicolai, Food Res. Int. (2018). https://doi.org/10.1016/j.foodhyd.2017.09.021
X. Li, Y. Li, Y. Hua, A. Qiu, C. Yang, S. Cui, Food Chem. (2007). https://doi.org/10.1016/j.foodchem.2007.02.003
T. Phan-Xuan, D. Durand, T. Nicolai, L. Donato, C. Schmitt, L. Bovetto, Food Hydrocoll. (2014). https://doi.org/10.1016/j.foodhyd.2012.09.008
J. Yan, L. Yin, Y. Qu, Y. Wenjia, M. Zhang, J. Su, X. Jia, Food Hydrocoll. (2022). https://doi.org/10.1016/j.foodhyd.2022.107997
X. Wang, M. Zeng, F. Qin, B. Adhikari, Z. He, J. Chen, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.09.044
L. Zheng, F. Teng, N. Wang, X.N. Zhang, J.M. Regenstein, J.S. Liu, Y. Li, Z.J. Wang, Appl. Sci. (Switzerland) (2019). https://doi.org/10.3390/app9061076
T. Furukawa, S. Ohta, Agric. Biol. Chem. (1983). https://doi.org/10.1271/bbb1961.47.751
M.C. Puppo, C.E. Lupano, M.C. Añón, J. Agric. Food Chem. (1995). https://doi.org/10.1021/jf00057a008
Z.Y. Ju, A. Kilara, J. Food Sci. (1998). https://doi.org/10.1111/j.1365-2621.1998.tb15728.x
M.V. Avanza, M.C. Añón, J. Sci. Food Agric. (2007). https://doi.org/10.1002/jsfa.2751
H. Zhao, W. Li, F. Qin, J. Chen, Int. J. Food Sci. Technol. (2016). https://doi.org/10.1111/ijfs.13010
J. Zhang, L. Liang, Z. Tian, L. Che, M. Subirade, Food Chem. (2012). https://doi.org/10.1016/j.foodchem.2012.01.049
K. Shimada, J.C. Cheftel, J. Agric. Food Chem. (1988). https://doi.org/10.1021/jf00079a038
A.C. Alting, R.J. Hamer, C.G. de Kruif, R.W. Visschers, J. Agric. Food Chem. (2000). https://doi.org/10.1021/jf000474h
N. Maruyama, T. Fukuda, S. Saka, N. Inui, J. Kotoh, M. Miyagawa, M. Hayashi, M. Sawada, T. Moriyama, S. Utsumi, Pytochemistry (2003). https://doi.org/10.1016/s0031-9422(03)00385-6
B. Song, N.W. Oehrle, S. Liu, H.B. Krishnan, J. Agric. Food Chem. (2016). https://doi.org/10.1021/acs.jafc.6b03677
S. Petruccelli, M.C. Añón, J. Agric. Food Chem. (1995). https://doi.org/10.1021/jf00060a009
A.A. Scilingo, M.C. Añón, J. Am. Oil Chemists’ Soc. (2004). https://doi.org/10.1007/s11746-004-0858-y
M.F. Hamet, J.A. Piermaria, A.G. Abraham, LWT Food Sci. Technol. (2015). https://doi.org/10.1016/j.lwt.2015.03.097
D.M. Folkenberg, P. Dejmekc, A. Skriver, H. Skov Guldager, R. Ipsen, Int. Dairy J. (2006). https://doi.org/10.1016/j.idairyj.2004.10.013
C. Wu, T. Wang, C. Ren, W. Ma, D. Wu, X. Xu, L.S. Wang, M. Du, Compr. Rev. Food Sci. Food Saf. (2018). https://doi.org/10.1111/1541-4337.12682
D. Gabrielle, B. de Cindio, P. D’Antona, Rheol. Acta (2001). https://doi.org/10.1007/s003970000139
X. Yang, C. Ke, L. Li, J. Food Eng. (2021). https://doi.org/10.1016/j.jfoodeng.2020.110243
S. Petruccelli, M.C. Añón, J. Agric. Food Chem. (1995). https://doi.org/10.1021/jf00055a004
M.V. Chandra, B.A. Shamasundar, Int. J. Food Prop. (2014). https://doi.org/10.1080/10942912.2013.845787
B.J. Dobraszczyk, J. Texture Stud. (1997). https://doi.org/10.1111/j.1745-4603.1997.tb00108.x
T.C. Brito-Oliveira, M. Bispo, I.C.F. Moraes, O.H. Campanella, S.C. De Pinho, Food Biophys. (2018). https://doi.org/10.1007/s11483-018-9529-4
F. Peyrano, M. de Lamballerie, M.V. Avanza, F. Speroni, Food Hydrocoll. (2022). https://doi.org/10.1016/j.foodhyd.2021.107220
S.H. Guzmán-Maldonado & O. Paredes-López, in Functional foods: biochemical and processing aspects ed. by G. Mazza, (C.R.S. Press, 1998), p. 293
Acknowledgements
The authors wish to thank María Fernanda Hamet for her kind and thorough technical assistance.
Funding
This work was supported by the CONICET (PIP 2021–2023 1147).
Author information
Authors and Affiliations
Contributions
A.M.: Methodology, Validation, Formal analysis, Investigation, Data Curation, J.P.: Conceptualization, Methodology, Investigation, Resources, Data Curation, Writing – Review & Editing, Supervision, Funding acquisition F.S.: Conceptualization, Methodology, Investigation, Project administration, Data Curation, Writing – Review & Editing, Supervision, Funding acquisition.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Marinacci, A., Piermaria, J. & Speroni, F. Cold-Set Gelation of Soybean and Amaranth Proteins by Hydration of Freeze-Dried Protein Previously Denatured in the Presence of Calcium. Food Biophysics 19, 284–297 (2024). https://doi.org/10.1007/s11483-023-09822-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11483-023-09822-6


