Abstract
In the present work, the interactions and associations between low denatured pea globulins (PPI) and purified main egg white proteins (ovalbumin (OVA), ovotransferrin (OVT), and lysozyme (LYS)) were studied at pH 7.5 and 9.0 by using isothermal titration calorimetry (ITC), dynamic light scattering (DLS), laser granulometry and confocal laser scanning microscopy (CLSM). From ITC, we detected strong exothermic interactions between PPI and LYS at both pHs, which led to aggregation. At these pH values, the net positive charge of lysozyme favored electrostatic interactions with negative charges of pea proteins, and oligomers were formed during titration experiments. Furthermore, DLS, laser granulometry, and CLSM data showed that the particle size of the mixture increased with increasing LYS to PPI molar ratio (from 0.8 to 20). Large irregular aggregates up to 20–25 μm were formed at high molar ratios and no complex coacervate was observed. No or very weak interactions were detected between OVT or OVA and PPI whatever the pH. These results suggest the role of electrostatic interactions between LYS and PPI when considering protein mixtures.
Similar content being viewed by others
References
M. Henchion, M. Hayes, A.M. Mullen, M. Fenelon, B. Tiwan, Foods 6(7), 53 (2017)
FAO. Notes on livestock, food security and gender equity. Animal Production and Health Working Paper. No. 3. Rome, Italy (2011)
United Nations General Assembly. Resolution adopted by the general assembly on 25 September 2015. A/RES/70/1 Transforming Our World: the 2030 Agenda for Sustainable Development (2015)
A.C. Alves, G.M. Tavares, Food Hydrocoll. 97, 105171 (2019)
J. Davis, U. Sonesson, D.U. Baumgarten, T. Nemecek, Food Res. Int. 43(7), 1874–1884 (2010)
J. Boye, F. Zare, A. Pletch, Food Res. Int. 43(2), 414–431 (2010)
S.R. Hertzler, J.C. Lieblein-Boff, M. Weiler, C. Allgeier, Nutrients 12(12), 3704 (2020)
I. Ersch, E. ter Laak, P. van der Linden, A. Venema, Martin, Food Hydrocoll. 44, 59–65 (2015)
W.N. Ainis, C. Ersch, R. Ipsen, Food Hydrocoll. 77, 397 (2017)
E.B. Hinderink, L. Sagis, K. Schroën, C.C. Berton-Carabin, Coll. Surf. B: Biointerfaces 192, 111015 (2020)
F. Guyomarc’h, G. Arvisenet, S. Bouhallab, F. Canon, S.-M. Deutsch, V. Drigon, D. Dupont, M.-H. Famelart, G. Garric, E. Guédon, T. Guyot, M. Hiolle, G. Jan, Y. Le Loir, V. Lechevalier, F. Nau, S. Pezennec, A. Thierry, F. Valence, V. Gagnaire, Trends Food Sci. Technol. 108, 119–132 (2021)
H.C.J. Godfray, P. Aveyard, T. Garnett, J.W. Hall, T.J. Key, J. Lorimer, R.T. Pierrehumbert, P. Scarborough, M. Springmann, S.A. Jebb, Science 361, eaam5324 (2018)
R.W. Burley, D.V. Vadehra (eds.), John Wiley & Sons, New York, p 65 (1989)
H.D. Belitz, W. Grosch, P. Schieberle, Food Chemistry: 4th Reversed and Extended Edition. (Springer, Heidelberg, 2009), pp. 546–562
P. Shih, J.F. Kirsch, Protein Sci. 4(10), 2063–2072 (1995)
P. Shih, D.R. Holland, J.F. Kirsch, Protein Sci. 4(10), 2050–2062 (1995)
T. Ueda, K. Masumoto, R. Ishibashi, T. So, T. Imoto, Protein Eng. 13(3), 193–196 (2000)
Y. Su, Y. Dong, F. Niu, C. Wang, Y. Liu, Y. Yang, Y Eur. Food Res. Technol. 240(2), 367–378 (2015)
T. Zhang, J. Guo, J.F. Chen, J.M. Wang, Z.L. Wan, X.Q. Yang, Food Hydro. 100, 105449 (2020)
F. Alavi, Z. Emam-Djomeh, L. Chen, Food Hydro. 107, 105960 (2020)
J. Zheng, C.H. Tang, G. Ge, M. Zhao, W. Sun, Food Hydro. 101, 105571 (2020)
F.E. O’Kane, R.P. Happe, J.M. Vereijken, H. Gruppen, M.A. van Boekel, J. Agric. Food Chem. 52(16), 5071–5078 (2004)
C.D. Munialo, A.H. Martin, E. Van Der Linden, H.H. De Jongh, J. Agric. Food Chem. 62(11), 2418–2427 (2014)
T.G. Burger, Y. Zhang, Trends Food Sci. Technol. 86, 25–33 (2019)
R.E. Aluko, O.A. Mofolasayo, B.M. Watts, J. Agric. Food Chem. 57(20), 9793–9800 (2009)
H.N. Liang, C.H. Tang, Food Hydro. 33(2), 309–319 (2013)
A.P. Adebiyi, R.E. Aluko, Food Chem. 128, 902 (2011)
J. Gueguen, Plant. Foods Hum. Nutr. 32(3), 267–303 (1983)
J.A. Gatehouse, R.R.D. Croy, H. Morton, M. Tyler, D. Boulter, Eur. J. BioChem. 118(3), 627–633 (1981)
F.E. O’Kane, R.P. Happe, J.M. Vereijken, H. Gruppen, M.A. van Boekel, J. Agric. Food Chem. 52(10), 3141–3148 (2004)
J.-L. Mession, S. Roustel, R. Saurel, Food Hydrocoll. 67(Supplement C), 229–242 (2017)
H.T. Kristensen, A.H. Møller, M. Christensen, M.S. Hansen, M. Hammershøj, T.K. Dalsgaard, Int. J. Food Sci. Technol. 55(8), 2920–2930 (2020)
H.T. Kristensen, Q. Denon, I. Tavernier, S.B. Gregersen, M. Hammershøj, P. Van Der Meeren, … T. K. Dalsgaard. Food Hydro. 113, 106556 (2021)
H.T. Kristensen, M. Christensen, M.S. Hansen, M. Hammershøj, T.K. Dalsgaard, Int. J. Food Sci. Technol. 56(11), 5777–5790 (2021)
H.T. Kristensen, M. Christensen, M.S. Hansen, M. Hammershøj, T.K. Dalsgaard, Food Chem. 373, 131509 (2022)
M.L. Chihi, J.L. Mession, N. Sok, R. Saurel, J. Agric. Food Chem. 64(13), 2780–2791 (2016)
T. Croguennec, F. Nau, S. Pezennec, G. Brule, J. Agric. Food Chem. 48(10), 4883–4889 (2000)
A.O.A.C. Official methods of Analysis: 15th edition. Ed by Association of Official Analytical Chemists, Washington DC (1990)
J. Mosse, J. Agric. Food Chem. 38(1), 18–24 (1990)
H. Greenfield, D.A.T. Southgate, Rome: Food and Agriculture Organization of the United Nations, 2nd edn. (2007)
A. Halabi, T. Croguennec, O. Ménard, V. Briard-Bion, J. Jardin, Y. Le Gouar, A. Deglaire, Food Hydrocoll. 126, 107368 (2022)
G. Somaratne, F. Nau, M.J. Ferrua, J. Singh, A. Ye, D. Dupont, J. Floury, Food Hydrocoll. 98, 105228 (2020)
M. Rabiller-Baudry, B. Chaufer, J. Chromatogr. B: Biomed. Sci. Appl. 753(1), 67–77 (2001)
M. Nigen, V. Le Tilly, T. Croguennec, D. Drouin-Kucma, S. Bouhallab, Biochim. Biophys. Acta (BBA)-Proteins Proteomics 1794(4), 709–715 (2009)
M. Nigen, T. Croguennec, D. Renard, S. Bouhallab, BioChem. 46(5), 1248–1255 (2007)
J. Zheng, Q. Gao, G. Ge, J. Wu, C.H. Tang, M. Zhao, W. Sun, Food Hydrocoll. 124, 107247 (2022)
T. Croguennec, G.M. Tavares, S. Bouhallab, Adv. Coll. Interface Sci. 239, 115–126 (2017)
M.L. Doyle, P. Hensley, In Proteomics and Protein-Protein Interactions (pp. 147–163). Springer, Boston, MA. (2005). https://doi.org/10.1007/0-387-24532-4_7
M. Girard, S.L. Turgeon, S.F. Gauthier, J. Agric. Food Chem. 51(15), 4450–4455 (2003)
L. Aberkane, J. Jasniewski, C. Gaiani, J. Scher, C. Sanchez, Langmuir 26(15), 12523 (2010)
S. Leavitt, E. Freire, Curr. Opin. Struct. Biol. 11(5), 560–566 (2001)
G. Klebe, Nat. Rev. Drug Discov. 14(2), 95–110 (2015)
X. Li, Y. Li, Y. Hua, A. Qiu, C. Yang, S. Cui, Food Chem. 104(4), 1410–1417 (2007)
J. Zheng, Q. Gao, G. Ge, J. Wu, C.H. Tang, M. Zhao, W.J. Sun, Agric. Food Chem 69(28), 7948 (2021)
K. Rezwan, A.R. Studart, J. Vörös, L.J. Gauckler, J. Phys. Chem. B 109(30), 14469–14474 (2005)
D.R. Klassen, M.T. Nickerson, Food Res. Int 46(1), 167–176 (2012)
I. Yadav, S. Kumar, V.K. Aswal, J. Kohlbrecher, Langmuir 33(5), 1227–1238 (2017)
H. Helmick, C. Hartanto, A. Bhunia, A. Liceaga, J.L. Kokini, Food Biophys. 16(4), 474–483 (2021)
A.M.B. Rodriguez, B.P. Binks, T. Sekine, Soft Matter 14(2), 239–254 (2018)
Y. Lan, J.B. Ohm, B. Chen, J. Rao, Food Hydrocoll. 101, 105556 (2020)
S. Nikfarjam, M. Ghorbani, S. Adhikari, A.J. Karlsson, E.V. Jouravleva, T.J. Woehl, M.A. Anisimov, Colloid J. 81, 546–554 (2019)
B. Chen, H. Li, Y. Ding, H. Suo, LWT-Food Sci. Technol. 47(1), 31–38 (2012)
Y. Yuan, Z.L. Wan, X.Q. Yang, S.W. Yin, Food Res. Int. 55, 207–214 (2014)
Funding
Authors would like to thank the Chinese Scholarship Council (CSC) (CAS NO. 201808330409) for funding and l’Institut Carnot Qualiment® for its financial support.
Author information
Authors and Affiliations
Contributions
Jian Kuang: methodology, investigation, formal analysis, writing original draft, visualizationPascaline Hamon: methodology, resourcesFlorence Rousseau: methodology, resourcesEliane Cases: conceptualization, methodology, resources, validation, Writing - Review & EditingSaïd Bouhallab: conceptualization, methodology, formal analysis, validation, Writing - Review & EditingRémi Saurel: conceptualization, methodology, validation, Writing - Review & Editing, supervision, project administration, funding acquisitionValérie Lechevalier: conceptualization, methodology, validation, Writing - Review & Editing, supervision, project administration, funding acquisition.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kuang, J., Hamon, P., Rousseau, F. et al. Interactions Between Isolated Pea Globulins and Purified Egg White Proteins in Solution. Food Biophysics 18, 520–532 (2023). https://doi.org/10.1007/s11483-023-09797-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11483-023-09797-4