Skip to main content
Log in

Using ATR-FT-IR Spectroscopy and Multivariate Curve Resolution to Quantify Variations in the Crystal Structure of Tempered Chocolate

  • Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The production of chocolate treats with a long shelf-life and desirable organoleptic characteristics depends, at a first stage, on proper tempering and cooling during manufacturing. These process steps control the formation and the structure of the fat crystal network, which should predominately consist of triacylglycerols (TAGs) in the β (V) polymorphic form. This study uses Fourier Transform-Infrared spectroscopy by Attenuated Total Reflection (ATR-FT-IR) to examine the formation of the fat crystal structure in cocoa butter and dark chocolate during cooling under laboratory conditions. ATR-FT-IR was also used to analyse chocolates that were produced by industrial scale equipment, tempered at different processing settings. Spectra acquired during cooling and storage were processed by Multivariate Curve Resolution (MCR). MCR provides quantitative and qualitative information on the dominant polymorphs in the chocolate samples, expressing structural information of the TAGs (glycerol conformation, sub-cell packing, chain configuration, etc.). Using this combination of analytical methods and data modelling, it was possible to identify chocolates with increased conformational regularity of the hydrocarbon chains and differentiate samples that had a mixed profile of ordered and disordered chain configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

Author Eleni Ioannidi should be contacted upon any request of the data.

Abbreviations

ATR-FT-IR:

Attenuated Total Reflection Fourier Transform Infrared spectroscopy

MCR:

Multivariate Curve Resolution

TAGs:

Triacylglycerols

DSC:

Differential Scanning Calorimetry

PCA:

Principal Component Analysis

POP:

1,3-Dipalmitoyl-2-oleoyl-glycerol

SOS:

1,3-Distearoyl-2-oleoyl-glycerol

POS:

1-Palmitoyl-2-oleoyl-3-stearoyl-glycerol

References

  1. E. J. Windhab, in Beckett’s Ind. Choc. Manuf. Use, edited by S. T. Beckett, M. S. Fowler, and G. R. Ziegler (John Wiley & Sons, Ltd, 2017), pp. 314–355.

  2. G.M. Chapman, E.E. Akehurst, W.B. Wright, J. Am. Oil Chem. Soc. 48, 824 (1971)

    Article  CAS  Google Scholar 

  3. R.L. Wille, E.S. Lutton, J. Am. Oil Chem. Soc. 43, 491 (1966)

    Article  CAS  PubMed  Google Scholar 

  4. A. Kossoy, J. Therm. Anal. Calorim. 143, 599 (2021)

    Article  CAS  Google Scholar 

  5. E. Ioannidi, J. Risbo, E. Aarøe, F.W.J. Van Den Berg, Food Anal. Methods 14, 2556 (2021)

    Article  Google Scholar 

  6. O.L. Mayorga, E. Freire, Biophys. Chem. 27, 87 (1987)

    Article  Google Scholar 

  7. H. F. Shurvell, in Handb. Vib. Spectrosc., edited by P. Griffiths and J. M. Chalmers (American Cancer Society, 2006), pp. 1783–1816.

  8. J. M. Chalmers, in Handb. Vib. Spectrosc., edited by P. Griffiths and J. M. Chalmers (American Cancer Society, 2007), pp. 1893–1918.

  9. P. R. Griffiths, in Handb. Vib. Spectrosc., edited by P. Griffiths and J. M. Chalmers (American Cancer Society, 2010), pp. 33–70.

  10. J. Yano, S. Ueno, K. Sato, T. Arishima, N. Sagi, F. Kaneko, M. Kobayashi, J. Phys. Chem. 97, 12967 (1993)

    Article  CAS  Google Scholar 

  11. A. Minato, J. Yano, S. Ueno, K. Smith, K. Sato, Chem. Phys. Lipids 88, 63 (1997)

    Article  CAS  Google Scholar 

  12. H. Yui, Y. Isozaki, T. Morisaku, Anal. Sci. 33, 75 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. C. Akita, T. Kawaguchi, F. Kaneko, J. Phys. Chem. B 110, 4346 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. D.R. Kodali, D. Atkinson, D.M. Small, J. Lipid Res. 31, 1853 (1990)

    Article  CAS  PubMed  Google Scholar 

  15. J. Yano, F. Kaneko, M. Kobayashi, D.R. Kodali, D.M. Small, K. Sato, J. Phys. Chem. B 101, 8120 (1997)

    Article  CAS  Google Scholar 

  16. J. Yano, F. Kaneko, M. Kobayashi, K. Sato, J. Phys. Chem. B 101, 8112 (1997)

    Article  CAS  Google Scholar 

  17. F. Kaneko, K. Tashiro, M. Kobayashi, J. Cryst. Growth 198–199, 1352 (1999)

    Article  Google Scholar 

  18. S. Bresson, A. Lecuelle, F. Bougrioua, M. El Hadri, V. Baeten, M. Courty, S. Pilard, S. Rigaud, V. Faivre, Food Chem. 363, 130 (2021)

    Article  Google Scholar 

  19. F. Kaneko, K. Oonishi, H. Uehara, and H. Hondoh, Cryst. Growth Des. 21, 3290 (2021).

  20. A. De Juan, J. Jaumot, R. Tauler, Anal. Methods 6, 4964 (2014)

    Article  Google Scholar 

  21. J. Coates, in Handb. Vib. Spectrosc., edited by P. Griffiths and J. M. Chalmers (American Cancer Society, 2006), pp. 2235–2257.

  22. S. Krist, in Veg. Fats Oils, edited by S. Krist (Springer, 2020), pp. 399–404.

  23. H.E. Eilers, F.H. Boelens, Leiden Univ. Med. Cent. Rep. 1, 5 (2005)

    Google Scholar 

  24. K. Larsson, Ark. För Kemi 23, 1 (1964)

    CAS  Google Scholar 

  25. S.B. Engelsen, JAOCS. J. Am. Oil Chem. Soc. 74, 1495 (1997)

    Article  CAS  Google Scholar 

  26. J.T. Reilly, J.M. Walsh, M.L. Greenfield, M.D. Donohue, Spectrochim. Acta Part A Mol. Spectrosc. 48, 1459 (1992)

    Google Scholar 

  27. K. Sato, in Cryst. Lipids Fundam. Appl. Food, Cosmet. Pharm., edited by K. Sato (John Wiley & Sons, Ltd, 2018), pp. 17–60.

Download references

Funding

Innovation Fund Denmark and Aasted Aps (Copenhagen, Denmark) funded the research through the PhD project “Modernization of Chocolate Tempering” (Grant no. 7038-00172B).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors have given approval to the final version of the manuscript.

Conceptualization: Frans W.J. van den Berg, Jens Risbo, Søren B. Engelsen, Eleni Ioannidi; Methodology: Frans W.J. van den Berg, Jens Risbo, Søren B. Engelsen, Eleni Ioannidi; Formal analysis and investigation: Frans W.J. van den Berg, Jens Risbo, Søren B. Engelsen, Eleni Ioannidi; Writing—original draft preparation: Eleni Ioannidi; Writing—review and editing: Frans W.J. van den Berg, Jens Risbo, Søren B. Engelsen, Esben Aarøe, Eleni Ioannidi; Funding acquisition: Frans W.J. van den Berg, Esben Aarøe; Supervision: Frans W.J. van den Berg, Jens Risbo, Esben Aarøe.

Corresponding author

Correspondence to Eleni Ioannidi.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Jens Risbo is member of the Editorial board of Food Biophysics.

Ethics Approval and Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioannidi, E., Aarøe, E., Balling Engelsen, S. et al. Using ATR-FT-IR Spectroscopy and Multivariate Curve Resolution to Quantify Variations in the Crystal Structure of Tempered Chocolate. Food Biophysics 18, 148–160 (2023). https://doi.org/10.1007/s11483-022-09760-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-022-09760-9

Keywords

Navigation