Skip to main content
Log in

Encapsulation of Anthocyanic Extract of Jambolan (Syzygium cumini (L.)) in Zein Sub-micron Fibers Produced by Electrospinning

  • Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Jambolan is a fruit rich in anthocyanins, among other bioactive compounds. In addition to the biological properties, jambolan anthocyanins have the potential for the production of food packaging, considering that they are antioxidants and can change color as a function of pH (indicator). The objective of this study was to encapsulate jambolan extract at concentrations of 0, 20, 30, and 40% (w/v) in sub-micron zein fibers by the electrospinning technique. The fibers produced were evaluated for morphology, size distribution, loading capacity, contact angle, thermal properties, and antioxidant activity. The fibers showed uniform and continuous morphology, and loading capacity of up to 66.8%. The incorporation of extract into the zein fibers increased the mean diameter from 472 nm (control fibers) to 562–622 nm and reduced the contact angle of 94.4º to 64.4º in the fibers containing extract. Also, the incorporation of the extract at concentrations of up to 40% w/w, does not alter the thermal stability of the fibers, as results of thermal and thermogravimetric analysis. Fibers containing extract in different concentrations (20, 30 and 40%) showed antioxidant activity ranging from 29.7 to 40.5% inhibition by the DPPH method and from 37.9 to 58.8% inhibition by the ABTS•+ method. Therefore, the sub-micron zein fibers with jambolan extract produced by electrospinning show promising characteristics for the elaboration of active and/or intelligent food packaging.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Contact Felipe Nardo dos Santos/felipe22.s@hotmail.com.

References

  1. G.T. Sigurdson, P. Tang, M.M. Giusti, Annu. Rev. Food Sci. Technol. (2017). https://doi.org/10.1146/annurev-food-030216-025923

    Article  PubMed  Google Scholar 

  2. G. Jiang, X. Hou, X. Zeng, C. Zhang, H. Wu, G. Shen, S. Li, Q. Luo, M. Li, X. Liu, A. Chen, Z. Wang, Z. Zhang, Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.024

    Article  PubMed  PubMed Central  Google Scholar 

  3. R. Andretta, C.L. Luchese, I.C. Tessaro, J.C. Spada, Food Hydrocoll. (2019). https://doi.org/10.1016/j.foodhyd.2019.02.019

    Article  Google Scholar 

  4. B. Merz, C. Capello, G.C. Leandro, D.E. Moritz, A.R. Monteiro, G.A. Valencia, Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.048

    Article  PubMed  Google Scholar 

  5. M. Fidan-Yardimci, S. Akay, F. Sharifi, C. Sevimli-Gur, G. Ongen, O. Yesil-Celiktas, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2019.04.086

    Article  PubMed  Google Scholar 

  6. L. Prietto, V.Z. Pinto, S.L.M. El Halal, M.G. de Morais, J.A.V. Costa, L. Lim, A.R.G. Dias, E.R. Zavareze, J. Sci. Food Agric. (2018). https://doi.org/10.1002/jsfa.8769

    Article  PubMed  Google Scholar 

  7. G. S. Filipini, V. P. Romani, V. Guimarães Martins, Food Hydrocoll. (2020) https://doi.org/10.1016/j.foodhyd.2020.106139

  8. A.F. Faria, M.C. Marques, A.Z. Mercadante, Food Chem. (2011). https://doi.org/10.1016/j.foodchem.2010.12.007

    Article  PubMed  Google Scholar 

  9. G. Flores, M.L.R. del Castillo, A. Costabile, A. Klee, K.B. Guergoletto, G.R. Gibson, J. Funct. Foods. (2015). https://doi.org/10.1016/j.jff.2015.04.022

    Article  Google Scholar 

  10. L.B.S. Sabino, E.G.A. Filho, F.A.N. Fernandes, E.S. Brito, I.J.S. Júnior, Food Bioprod. Process. (2021). https://doi.org/10.1016/j.fbp.2021.02.012

    Article  Google Scholar 

  11. E. Assadpour and S. M. Jafari, in Nanomaterials for Food Applications (Elsevier Inc., 2019), p. 35. https://doi.org/10.1016/B978-0-12-814130-4.00003-8

  12. M.C. Lee, C. Tan, R. Ravanfar, A. Abbaspourrad, A.C.S. Appl, Mater. Interfaces. (2019). https://doi.org/10.1021/acsami.9b05089

    Article  Google Scholar 

  13. F. Zanoni, M. Primiterra, N. Angeli, G. Zoccatelli, Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2019.125535

    Article  PubMed  Google Scholar 

  14. C. Xie, Q. Wang, R. Ying, Y. Wang, Z. Wang, M. Huang, Food Hydrocoll. (2020). https://doi.org/10.1016/j.foodhyd.2019.105448

    Article  Google Scholar 

  15. G.C. Leandro, C. Capello, B.L. Koop, J. Garcez, A.R. Monteiro, G.A. Valencia, Food Res. Int. (2021). https://doi.org/10.1016/j.foodres.2020.109903

    Article  Google Scholar 

  16. Y. Ji, J. Food Eng. (2021). https://doi.org/10.1016/j.jfoodeng.2021.110552

    Article  Google Scholar 

  17. J.A. Evangelho, R.L. Crizel, F.C. Chaves, L. Prietto, V.Z. Pinto, M.Z. Miranda, A.R.G. Dias, E.R. Zavareze, Food Res. Int. (2019). https://doi.org/10.1016/j.foodres.2018.08.019

    Article  PubMed  Google Scholar 

  18. Y.-N. Jiang, H.-Y. Mo, D.-G. Yu, Int. J. Pharm. (2012). https://doi.org/10.1016/j.ijpharm.2012.08.053

    Article  PubMed  Google Scholar 

  19. D. Brahatheeswaran, A. Mathew, R.G. Aswathy, Y. Nagaoka, K. Venugopal, Y. Yoshida, T. Maekawa, D. Sakthikumar, Biomed. Mater. (2012). https://doi.org/10.1088/1748-6041/7/4/045001

    Article  PubMed  Google Scholar 

  20. F.N. Santos, E.J.D. Souza, T.J. Siebeneichler, J.B. Pires, D.H. Kringel, A.D. Meinhart, A.R.G. Dias, E.R. Zavareze, Food Anal. Methods. (2022). https://doi.org/10.1007/s12161-022-02313-3

    Article  Google Scholar 

  21. K. Zhang, T.S. Huang, H. Yan, X. Hu, T. Ren, Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.159

    Article  PubMed  PubMed Central  Google Scholar 

  22. T. J. Siebeneichler, R. L. Crizel, G. H. Camozatto, B. T. Paim, R. da Silva Messias, C. V. Rombaldi, V. Galli, Food Chem. (2020) https://doi.org/10.1016/j.foodchem.2020.126407

  23. J. A. R. Singleton, Vernon L., Am. J. Enol. Vitic. 16, 144 (1965).

  24. J.Y. Lin, C.Y. Tang, Food Chem. (2007). https://doi.org/10.1016/j.foodchem.2006.01.014

    Article  PubMed  PubMed Central  Google Scholar 

  25. J. Lee, R.W. Durst, R.E. Wrolstad, J. AOAC Int. (2005). https://doi.org/10.1093/jaoac/88.5.1269

    Article  PubMed  Google Scholar 

  26. L.M. Fonseca, J.P. Oliveira, R.L. Crizel, F.T. Silva, E.R. Zavareze, C.D. Borges, Food Biophys. (2020). https://doi.org/10.1007/s11483-020-09629-9

    Article  Google Scholar 

  27. J.P. Oliveira, G.P. Bruni, L.M. Fonseca, F.T. Silva, J.C. Rocha, E.R. Zavareze, Food Hydrocoll. (2020). https://doi.org/10.1016/j.foodhyd.2020.105931

    Article  Google Scholar 

  28. B. Singh, J.P. Singh, A. Kaur, N. Singh, Int. J. Food Sci. Technol. (2018). https://doi.org/10.1111/ijfs.13841

    Article  Google Scholar 

  29. L.N. Lestario, L.R. Howard, C. Brownmiller, N.B. Stebbins, R. Liyanage, J.O. Lay, Food Res. Int. (2017). https://doi.org/10.1016/j.foodres.2017.04.023

    Article  PubMed  Google Scholar 

  30. I.M.C. Tavares, E.S. Lago-Vanzela, L.P.G. Rebello, A.M. Ramos, S. Gómez-Alonso, E. García-Romero, R. Da-Silva, I. Hermosín-Gutiérrez, Food Res. Int. (2016). https://doi.org/10.1016/j.foodres.2016.01.014

    Article  PubMed  Google Scholar 

  31. H.I. Castro-Vargas, D.B. Vivas, J.O. Barbosa, S.J.M. Medina, F.A. Gutiérrez, F. Parada-Alfonso, Antioxidants (2019). https://doi.org/10.3390/antiox8020041

    Article  PubMed  PubMed Central  Google Scholar 

  32. N. Kahkeshani, F. Farzaei, M. Fotouhi, S. S. Alavi, R. Bahramsoltani, R. Naseri, S. Momtaz, Z. Abbasabadi, R. Rahimi, M. H. Farzaei, A. Bishayee, Iran. J. Basic Med. Sci. (2019) https://doi.org/10.22038/ijbms.2019.32806.7897

  33. H. Li, Q. Li, Z. Liu, K. Yang, Z. Chen, Q. Cheng, L. Wu, Evid. Based Complementary Altern. Med. (2017). https://doi.org/10.1155/2017/1053617

    Article  Google Scholar 

  34. K.S. Park, Y. Chong, M.K. Kim, Appl. Biol. Chem. (2016). https://doi.org/10.1007/s13765-016-0150-2

    Article  Google Scholar 

  35. B. Salehi, L. Machin, L. Monzote, J. Sharifi-Rad, S.M. Ezzat, M.A. Salem, R.M. Merghany, N.M. El Mahdy, C.S. Klllç, O. Sytar, M. Sharifi-Rad, F. Sharopov, N. Martins, M. Martorell, W.C. Cho, ACS Omega (2020). https://doi.org/10.1021/acsomega.0c01818

    Article  PubMed  PubMed Central  Google Scholar 

  36. D. Li, P. Wang, Y. Luo, M. Zhao, F. Chen, Crit. Ver. Food Sci. Nutr. (2017) https://doi.org/10.1080/10408398.2015.1030064

  37. S. K. T. Seraglio, M. Schulz, P. Nehring, F. Della Betta, A. C. Valese, H. Daguer, L. V. Gonzaga, R. Fett, A. C. O. Costa, Food Chem. (2018) https://doi.org/10.1016/j.foodchem.2017.06.118

  38. T.S.O. Brandão, L.S. Pinho, E. Teshima, J.M. David, M.I. Rodrigues, Brazilian J. Food Technol. (2019). https://doi.org/10.1590/1981-6723.15818

    Article  Google Scholar 

  39. B.L. Koop, M.A. Knapp, M. Di Luccio, V.Z. Pinto, L. Tormen, G.A. Valencia, A.R. Monteiro, Plant Foods Hum. Nutr. (2021). https://doi.org/10.1007/s11130-021-00878-8

    Article  PubMed  Google Scholar 

  40. A. Ali, T.M., Abbasi, K.S., Ali, A. & Hussain, Res. Pharm. 3, 1 (2015).

  41. J.P. Singh, A. Kaur, N. Singh, L. Nim, K. Shevkani, H. Kaur, D.S. Arora, Food Sci. Technol. (2016). https://doi.org/10.1016/j.lwt.2015.09.038

    Article  Google Scholar 

  42. A.S. Reginold, J.S. Jeyanth, Asian J. Pharm Clin. Res. 9, 361 (2016)

    CAS  Google Scholar 

  43. R. M. Harsha, D. Ghosh, R. Banerjee, B. P. Salimath, Pharm. Biol. (2017) https://doi.org/10.1080/13880209.2017.1307422

  44. I.G. Branco, I.C.F. Moraes, E.J.S. Argandoña, G.S. Madrona, C. Santos, A.L.T.G. Ruiz, J.E. Carvalho, C.W.I. Haminiuk, Ind. Crops Prod. (2016). https://doi.org/10.1016/j.indcrop.2016.04.055

    Article  Google Scholar 

  45. C.L.S.D.O. Mori, N.A. Passos, J.E. Oliveira, T.F. Altoé, F.A. Mori, L.H.C. Mattoso, J.R. Scolforo, G.H.D. Tonoli, J. Nanomater. (2015). https://doi.org/10.1155/2015/439253

    Article  Google Scholar 

  46. I. Unalan, S.J. Endlein, B. Slavik, A. Buettner, W.H. Goldmann, R. Detsch, A.R. Boccaccini, Pharmaceutics. (2019). https://doi.org/10.3390/pharmaceutics11110570

    Article  PubMed  PubMed Central  Google Scholar 

  47. N. Arik, N. Horzum, and Y. B. Truong, Membranes. (2022) https://doi.org/10.3390/membranes12020209

  48. Z. Aytac, K.I. Semran, E. Durgun, T. Uyar, Mater. Sci. Eng. C (2016). https://doi.org/10.1016/j.msec.2016.02.063

    Article  Google Scholar 

  49. M.E. El-Naggar, A.M. Abdelgawad, C. Salas, O.J. Rojas, Carbohydr. Polym. (2016). https://doi.org/10.1016/j.carbpol.2016.08.042

    Article  PubMed  Google Scholar 

  50. N. Bhardwaj, S.C. Kundu, Biotechnol. Adv. (2010). https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  PubMed  Google Scholar 

  51. L.B. Avila, M.R.V. Fortes, E.R. Zavareze, C.C. Moraes, M.M. Morais, G.S. Rosa, Polym. (2020). https://doi.org/10.3390/polym12122916

    Article  Google Scholar 

  52. A. Altan, Z. Aytac, T. Uyar, Food Hydrocoll. (2018). https://doi.org/10.1016/j.foodhyd.2018.02.028

    Article  Google Scholar 

  53. S. Chen, M. Wu, P. Lu, L. Gao, S. Yan, S. Wang, Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.231

    Article  PubMed  PubMed Central  Google Scholar 

  54. L. Li, H. Wang, M. Chen, S. Jiang, J. Cheng, X. Li, M. Zhang, S. Jiang, Food Hydrocoll. (2020). https://doi.org/10.1016/j.foodhyd.2019.105577

    Article  PubMed  PubMed Central  Google Scholar 

  55. Y.P. Neo, S. Ray, J. Jin, M. Gizdavic-Nikolaidis, M.K. Nieuwoudt, D. Liu, S.Y. Quek, Food Chem. (2013). https://doi.org/10.1016/j.foodchem.2012.09.010

    Article  PubMed  Google Scholar 

  56. R. Pérez-masiá, A. López-rubio, J.M. Lagarón, Food Hydrocoll. (2013). https://doi.org/10.1016/j.foodhyd.2012.05.010

    Article  Google Scholar 

  57. R. Becerril, C. Nerín, F. Silva, Trends Food Sci. Technol. (2021). https://doi.org/10.1016/j.tifs.2021.02.042

    Article  Google Scholar 

  58. V. Müller, J.F. Piai, A.R. Fajardo, S.L. Fávano, A.F. Rubira, E.C. Muniz, J. Nanomater. (2011). https://doi.org/10.1155/2011/928728

    Article  Google Scholar 

  59. C.L.S.O. Mori, N.A. Passos, J.E. Oliveira, L.H.C. Mattoso, F.A. Mori, A.G. Carvalho, A.S. Fonseca, G.H.D. Tonoli, Ind. Crops Prod. (2014). https://doi.org/10.1016/j.indcrop.2013.10.047

    Article  Google Scholar 

  60. T.M.A.R.D. Vedove, B.C. Maniglia, C.C. Tadini, J. Food Eng. (2021). https://doi.org/10.1016/j.jfoodeng.2020.110274

    Article  Google Scholar 

  61. T.S.M. Kumar, K.S. Kumar, N. Rajini, S. Siengchin, N. Ayrilmis, A.V. Rajulu, Compos. B. (2019). https://doi.org/10.1016/j.compositesb.2019.107074

    Article  Google Scholar 

  62. N. Sharif, S. Khoshnoudi-Nia, S.M. Jafari, Food Res. Int. (2020). https://doi.org/10.1016/j.foodres.2020.109077

    Article  PubMed  Google Scholar 

  63. L. Deng, Y. Li, F. Feng, H. Zhang, Food Hydrocoll. (2019). https://doi.org/10.1016/j.foodhyd.2018.07.042

    Article  Google Scholar 

  64. D.M. Correia, C. Ribeiro, V. Sencadas, G. Botelho, S.A.C. Carabineiro, J.L.G. Ribelles, S. Lanceros-Méndez, Prog. Org. Coat. (2015). https://doi.org/10.1016/j.porgcoat.2015.03.019

    Article  Google Scholar 

  65. J. Gómez-Estaca, C. López-de-Dicastillo, P. Hernández-Muñoz, R. Catalá, R. Gavara, Food Sci. Technol. (2014). https://doi.org/10.1016/j.tifs.2013.10.008

    Article  Google Scholar 

  66. I. Lukic, J. Vulic, J. Ivanovic, Food Packag. Shelf Life. (2020). https://doi.org/10.1016/j.fpsl.2020.100578

    Article  Google Scholar 

  67. N.R.R. Nascimento-Silva, R.P. Bastos, F.A. Silva, J. Food Compost. Anal. (2022). https://doi.org/10.1016/j.jfca.2022.104491

    Article  Google Scholar 

  68. K.J. Lee, Y.C. Oh, W.K. Cho, J.Y. Ma, Evid. Based Complementary Altern. Med. (2015). https://doi.org/10.1021/acsami.9b05089

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank by CAPES (finance Code 001), CNPQ and FAPERGS by the resources and to the laboratories LACEM (UFPel), CEME-SUL (FURG), LaCoPol (UFPel), CDTec-LAPEM (UFPel) and to CDC-Bio (UFPel).

Funding

This study was financed by CNPq universal project (421727/2018–7).

Author information

Authors and Affiliations

Authors

Contributions

Felipe Nardo dos Santos: Conceptualization, Methodology, Software, Formal analysis, Data curation, Investigation, Writing–original draft, Writing–review & editing. Estefania Júlia Dierings de Souza: Investigation, Writing–original draft, Writing–review & editing. Jaqueline Ferreira de Souza: Conceptualization, Data curation, Writing–review. Juliani Buchveitz Pires: Formal analysis, Writing–review & editing. Tatiane Jéssica Siebeneichler: Methodology, Software, Validation, Writing–review & editing. Dianini Hüttner Kringel: Investigation, Writing–review & editing. André Ricardo Fajardo: Conceptualization, Writing–review & editing. Cesar Valmor Rombaldi: Conceptualization, Writing–review & editing. Alvaro Renato Guerra Dias: Conceptualization, Supervision. Elessandra da Rosa Zavareze: Conceptualization, Supervision, Validation, Funding acqui-sition, Writing–review & editing

Corresponding author

Correspondence to Felipe Nardo dos Santos.

Ethics declarations

Competing Interests

All the authors hereby declare that they do not have any conflict of interest about this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The sub-micron fibers presented diameter ranging from 472 to 622 nm

• The jambolan extract did not affect the morphological of the fibers

• Fibers prepared with 20% jambolan extract showed the highest LC

• The fibers showed antioxidant activity of up to 58.7%

• The fibers produced in this study can be used as active or intelligent packaging

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, F.N., de Souza, E.J.D., de Souza, J.F. et al. Encapsulation of Anthocyanic Extract of Jambolan (Syzygium cumini (L.)) in Zein Sub-micron Fibers Produced by Electrospinning. Food Biophysics 18, 133–147 (2023). https://doi.org/10.1007/s11483-022-09758-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-022-09758-3

Keywords

Navigation