Skip to main content

Antimicrobial properties of PLA membranes loaded with pink pepper (Schinus terebinthifolius Raddi) essential oil applied in simulated cream cheese packaging

Abstract

Ultrafine fiber membranes of polylactic acid (PLA) 8% (w/v) loaded with pink pepper essential oil (PPEO) in 10, 20 and 30% (w/v) were produced and evaluated for antimicrobial potential against the bacteria Escherichia coli, Salmonella enteritidis, Listeria monocytogenes and Staphylococcus aureus. The membranes were applied in simulated cream cheese packaging and characterized by morphological, thermal, structural, antimicrobial and wettability analysis. The addition of PPEO reduced the diameter of fibers and increased the initial degradation temperature in relation to pure PPEO. The PPEO presented myrcene as major component and had antimicrobial action for S. aureus and L. monocytogenes. The membranes applied to the cream cheese packaging showed inhibitory effect on the 21st day of storage, for L. monocytogenes. For S. aureus, the membranes inhibited the growth of the colonies on days 14 and 21, with reductions of 30 and 62%, respectively. Finally, the ultrafine membranes had hydrophobic character.

Highlights

Protective thermal effect of PLA on PPEO

Membranes of ultrafine fibers showed hydrophobicity

Potential action of PPEO volatile compounds in reducing bacteria

Antimicrobial effect of membranes in simulated cream cheese packaging

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

Contact Milena Ramos Vaz Fontes | milenarvf@gmail.com.

References

  1. T. López-Pedemonte, A. Roig-Sagués, S. De Lamo, M. Hernández-Herrero, B. Guamis, Food Microbiol. (2007) https://doi.org/10.1016/j.fm.2006.03.008

    Article  PubMed  Google Scholar 

  2. A. Thakali, J.D. Macrae, Environ. Res. (2021) https://doi.org/10.1016/j.envres.2020.110635

    Article  PubMed  Google Scholar 

  3. M.A. Mohammadi, S. Ramezani, H. Hosseini, A.M. Mortazavian, S.M. Hosseini, M. Ghorbani, Food Bioprocess. Tech. (2021) https://doi.org/10.1007/s11947-021-02654-7

    Article  Google Scholar 

  4. B. Malhotra, A. Keshwani, H. Kharkwal, H. Front, Microbiol. (2015) https://doi.org/10.3389/fmicb.2015.00611

  5. M. Carpena, B. Nuñez-Estevez, A. Soria-Lopez, P. Garcia-Oliveira, M.A. Prieto, Resources (2021) https://doi.org/10.3390/resources10010007

  6. A.K. Pandey, P. Kumar, P. Singh, N.N. Tripathi, V.K. Bajpai, Front. Microbiol. (2017) https://doi.org/10.3389/fmicb.2016.02161

    Article  PubMed  PubMed Central  Google Scholar 

  7. Z.A. Aziz, A. Ahmad, S.H.M. Setapar, A. Karakucuk, M.M. Azim, D. Lokhat, M. Rafatullah, M. Ganash, M.A. Kamal, G.M. Ashraf, Curr. Drug Metab. (2018) DOI:https://doi.org/10.2174/1389200219666180723144850

    Article  PubMed  Google Scholar 

  8. A. El Asbahani, K. Miladi, W. Badri, M. Sala, E.A. Addi, H. Casabianca, A. Elaissari. Int. J. Pharm. (2015) https://doi.org/10.1016/j.ijpharm.2014.12.069

    Article  PubMed  Google Scholar 

  9. M. Hyldgaard., T. Mygind, R.L. Meyer, Front. Microbiol. (2012) https://doi.org/10.3389/fmicb.2012.00012

    Article  PubMed  PubMed Central  Google Scholar 

  10. A.R.M. Souza, V. Arthur, D.P. Nogueira. Radiat. Phys. Chem. (2012) https://doi.org/10.1016/j.radphyschem.2012.02.040

    Article  Google Scholar 

  11. F.S. Gomes, T.F. Procópio, T.H. Napoleão, L.C.B.B. Coelho, P.M.G. Paiva, J. Appl. Microbiol. (2013) https://doi.org/10.1111/jam.12086

    Article  PubMed  Google Scholar 

  12. M.P. Uliana, M. Fronza, A.G. Silva, T.S. Vargas, T.U. Andrade, R. Scherer, Ind. Crops Prod. (2016) https://doi.org/10.1016/j.indcrop.2015.11.077

    Article  Google Scholar 

  13. G.S. Dannenberg, G.D. Funck, F.J. Mattei, W.P. Silva, A.M. Fiorentini, Innov. Food Sci. Emerg. Technol. (2016) https://doi.org/10.1016/j.ifset.2016.06.009

    Article  Google Scholar 

  14. G.S. Dannenberg, G.D. Funck., C.E.S. Cruxen, J.L. Marques, W.P. Silva, A.M. Fiorentini, LWT-Food Sci. Technol. (2017) https://doi.org/10.1016/j.lwt.2017.04.002

    Article  Google Scholar 

  15. V.P. Romani, C.P. Hernández, V. Martins, Food Packag. Shelf Life (2018). https://doi.org/10.1016/j.fpsl.2018.01.003

  16. K.C. Medeiros, J.C. Monteiro, M.F. Diniz, I.A. Medeiros, B.A. Silva, M.R. Piuvezam, Rev. Bras. Farmacogn (2007). https://doi.org/10.1590/S0102-695X2007000100006

    Article  Google Scholar 

  17. M. T. H. Khan. Natural Products as Potential Resources for Antifungal Substances: A Survey. In: Antifungal Metabolites from Plants. (2013). Springer, Berlin, Heidelberg, 157–165. https://doi.org/10.1007/978-3-642-38076-1_5

  18. L.C. Queires, M. Crépin, T.F. Vachero, A. De La Taille, L.E. Rodrigues, Braz J. Med. Biol. Res. (2013). https://doi.org/10.17267/2317-3386bjmhh.v1i1.114

    Article  Google Scholar 

  19. A.C.A.D. Santos, M. Rossato, F. Agostini, L.A. Serafini, P.L.D. Santos, R. Molon, E. Dellacassa, P. Moyna, J. Essent. Oil-Bear Plants (2009) https://doi.org/10.1080/0972060X.2009.10643686

    Article  Google Scholar 

  20. A. Rehman, A.S.M. Jafari, S.M.,R.M. Aadil, R.M.E. Assadpour, E.M.A. Randhawa, M. A., & S. Mahmood, Trends Food Sci. Technol. (2020). https://doi.org/10.1016/j.tifs.2020.05.001

    Article  Google Scholar 

  21. J.A. Bhushani, C. Anandharamakrishnan, Trends Food Sci. Technol. (2014) https://doi.org/10.1016/j.tifs.2014.03.004

    Article  Google Scholar 

  22. J.B. Moreira, A.L.M. Terra, J.A.V. Costa, M.G. Morais, Int. J. Biol. Macromol. (2018) https://doi.org/10.1016/j.ijbiomac.2018.07.028

    Article  PubMed  Google Scholar 

  23. T.A.M. Valente, D.M. Silva, P.S. Gomes, M.H. Fernandes, J.D. Santos, V. Sencadas, ACS Appl. Mater. (2016) https://doi.org/10.1021/acsami.5b10869

    Article  Google Scholar 

  24. W. Xu, R. Shen, Y. Yan, J. Gao, J. Mech. Behav. Biomed. Mater. (2017) https://doi.org/10.1016/j.jmbbm.2016.09.012

    Article  PubMed  PubMed Central  Google Scholar 

  25. E. Preis, T. Anders, J. Širc, R. Hobzova, A.I. Cocarta, U. Bakowsky, J. Jedelská, Mater. Sci. Eng. C (2020) https://doi.org/10.1016/j.msec.2020.111068

    Article  Google Scholar 

  26. A. Altan, Z. Aytac, T. Uyar, Food Hydrocoll. (2018) https://doi.org/10.1016/j.foodhyd.2018.02.028

  27. K.H. Choi, H. Lee, S. Lee, S. Kim, Y. Yoon, Asian-Australas J. Anim. Sci. (2016) https://doi.org/10.5713/ajas.15.0332

    Article  PubMed  PubMed Central  Google Scholar 

  28. H.R. Juliani, J.E. Simon, C. Quansah, E. Asare, R. Akromah, D. Acquaye, M.L.K. Asante-Dartey, T.C. Fleischer, R. Dickson, K. Annan, A.Y. Mensah, J. Essent. Oil Res. (2008) https://doi.org/10.1080/10412905.2008.9699420

    Article  Google Scholar 

  29. M.R.V. Fontes, M.P. Rosa, L.M. Fonseca, P.H. Beck, E.R. Zavareze, A.R.G. Dias, Braz J. Chem. Eng. (2021) https://doi.org/10.1007/s43153-020-00083-1

    Article  Google Scholar 

  30. L.M. Fonseca, J.P. De Oliveira, R.L. Crizel, F.T. Da Silva, E.R. Zavareze, C.D. Borges, Food Biophys. (2020) https://doi.org/10.1007/s11483-020-09629-9

    Article  Google Scholar 

  31. F.T. Silva, K.F. Da Cunha, L.M. Fonseca, M.D. Antunes, S.L.M. El Halal, A.M. Fiorentini, E.R. Zavareze, A.R.G. Dias, Int. J. Biol. Macromol. (2018) https://doi.org/10.1016/j.ijbiomac.2018.06.079

    Article  PubMed  Google Scholar 

  32. G.P. Bruni, J.P. De Oliveira, L.G. Gómez-Mascaraque, M.J. Fabra, V.G. Martins, E.R. Zavareze, A. López-Rubio, Food Packag. Shelf Life (2020) https://doi.org/10.1016/j.fpsl.2019.100426

    Article  Google Scholar 

  33. V. Fombuena, J. Balart, T. Boronat, L. Sánchez-Nácher, D. Garcia-Sanoguera, Mater. Des. (2013) https://doi.org/10.1016/j.matdes.2012.11.031

    Article  Google Scholar 

  34. CLSI. M02-A12: Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Twelfth Edition. CLSI (Clinical and Laboratory Standards Institute), v. 35, n. 1, 2015

  35. CLSI. M07-A10: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition. CLSI (Clinical and Laboratory Standards Institute), 35, 2, 2015

  36. A.M. Ojeda-Sana, C.M. Van Baren, M.A. Elechosa, M.A. Juárez, S. Moreno, Food Control (2013) https://doi.org/10.1016/j.foodcont.2012.09.022

    Article  Google Scholar 

  37. M. Ghabraie, K.D. Vu, L. Tata, S. Salmieri, M. Lacroix, LWT-Food Sci. Technol. (2016) https://doi.org/10.1016/j.lwt.2015.10.055

    Article  Google Scholar 

  38. APHA (American Public Health Association). Compendium of Methods for the Microbiological Examination of Foods. 4ª ed, p. 25–36, 2001

  39. G.S. Dannenberg, G.D. Funck, W.P. Silva, A.M. Fiorentini, Food Control (2019) https://doi.org/10.1016/j.foodcont.2018.07.034

    Article  Google Scholar 

  40. A. Ennigrou, K. Hosni, H. Casabianca, E. Vulliet, S. Smiti, (2011). Leaf volatile oil constituants of schinus terebinthifolius and schinus molle from Tunisia. In: Conference proceedings of the 6th baltic conference on food science and technology FOODBALT-2011, Jelgava, Latvia, 5–6 May, 2011. Innovations for food science and production. Latvia University of Agriculture, Jelgava, 90–92

  41. D. Sadeh, N. Nitzan, D. Chaimovitsh, A. Shachter, M. Ghanim, N. Dudai, Ind. Crops Prod. (2019) https://doi.org/10.1016/j.indcrop.2019.05.068

    Article  Google Scholar 

  42. A.C. Guimarães, L.M. Meireles, M.F. Lemos, M.C.C. Guimarães, D.C. Endringer, M. Fronza, R. Scherer, Molecules (2019) https://doi.org/10.3390/molecules24132471

  43. S. Teilaghi, J. Movaffagh, J.Z. Bayat, J. Polym. Environ. (2020) https://doi.org/10.1007/s10924-020-01700-3

    Article  Google Scholar 

  44. F.M. Pelissari, F. Yamashita, M.A. Garcia, M.N. Martino, N.E. Zaritzky, M.V.E. Grossmann, J. Food Eng. (2012) https://doi.org/10.1016/j.jfoodeng.2011.09.004

    Article  Google Scholar 

  45. M. Rafiq, T. Hussain, S. Abid, A. Nazir, R. Masood, Mater. Res. Express (2018) https://doi.org/10.1088/2053-1591/aab0b4

    Article  Google Scholar 

  46. C.L. Mori, N.A.D. Passos, J.E. Oliveira, T.F. Altoé, F.A. Mori, L.H.C. Mattoso, G.H.D. Tonoli, J. Nanomater. (2015) https://doi.org/10.1155/2015/439253

    Article  Google Scholar 

  47. B. Ghorani, N. Tucker, F. Hydrocoll. (2015) https://doi.org/10.1016/j.foodhyd.2015.05.024

  48. I. Unalan, B. Slavik, A. Buettner, W.H. Goldmann, G. Frank, A.R. Boccaccini, Front. Bioeng. Biotechnol. (2019) https://doi.org/10.3389/fbioe.2019.00346

    Article  PubMed  PubMed Central  Google Scholar 

  49. R. Scaffaro, A. Maio, F. Lopresti, Compos. Sci. Technol. (2018) https://doi.org/10.1016/j.compscitech.2018.11.003

    Article  Google Scholar 

  50. N. Bhardwaj, S.C. Kundu, Biotechnol. Adv. (2010) https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  PubMed  Google Scholar 

  51. A. Haider, S. Haider, I.A. Kang, Arab. J. Chem. (2018) https://doi.org/10.1016/j.arabjc.2015.11.015

    Article  Google Scholar 

  52. E. Thangaraju, N.T. Srinivasan, R. Kumar, P.K. Sehgal, S. Rajiv, Fibers Polym. (2012) https://doi.org/10.1007/s12221-012-0823-3

    Article  Google Scholar 

  53. S. Palmieri, M. Pierpaoli, L. Riderelli, S. QI, M.L. Ruello, J. Compos. Sci. (2020) https://doi.org/10.3390/jcs4020079

    Article  Google Scholar 

  54. R. Mukherji, A. Prabhune, Sci. World J. (2014) https://doi.org/10.1155/2014/890709

    Article  Google Scholar 

  55. H. Boughendjioua, S. Djeddi, Am. J. Opt. Photonics (2017) https://doi.org/10.11648/j.ajop.20170503.12

    Article  Google Scholar 

  56. R.L. Oréfice, W.L. Vasconcelos, M.A.S. Moraes, Polímeros (2004) https://doi.org/10.1590/S0104-14282004000200017

  57. X. Sun, S. Yang, B. Xue, K. Huo, X. Li, Y. Tian, X. Liao, L. Xie, S. Qin, K. Xu, Q. Zheng, Chem. Eng. J. (2020) https://doi.org/10.1016/j.cej.2020.125297

    Article  PubMed  PubMed Central  Google Scholar 

  58. W. Dhifi, S. Bellili, S. Jazi, N. Bahloul, W. Mnif, Medicines (2016) https://doi.org/10.3390/medicines3040025

  59. I.R.N. Santos, J.C. de Farias, T.L.S. Lima, I.M.B.N. Queiroga, K. da Silva Chaves, M.T. Cavalcanti, M.C. Gonçalves, Res. Soc. Dev. (2020) https://doi.org/10.33448/rsd-v9i8.6674

    Article  Google Scholar 

  60. F. Nazzaro, F. Fratianni, L. De Martino, R. Coppola, V. De Feo, Pharmaceuticals (2013) https://doi.org/10.3390/ph6121451

  61. B.K. Tiwari, V.P. Valdramidis, C.P. O’Donnell, K. Muthukumarappan, P. Bourke, P.J. Cullen, J. Agric. Food Chem. (2009) https://doi.org/10.1021/jf900668n

    Article  PubMed  Google Scholar 

  62. K. Wu, Y. Lin, X. Chai, X. Duan, X. Zhao, C. Chun, Food Sci. Nutr. (2019) https://doi.org/10.1002/fsn3.1104

    Article  PubMed  PubMed Central  Google Scholar 

  63. T.L.C. Oliveira, R. de Araújo, Soares, R.H. Piccoli, Meat Sci. (2013) https://doi.org/10.1016/j.meatsci.2012.11.004

    Article  PubMed  Google Scholar 

  64. P. Kotzekidou, P. Giannakidis, A. Boulamatsis, LWT-Food Sci. Technol. (2008) DOI https://doi.org/10.1016/j.lwt.2007.01.016

    Article  Google Scholar 

  65. M.D. Antunes, G.S. Dannenberg, A.M. Fiorentini, V.Z. Pinto, L.T. Lim, E.R. Zavareze, A.R.G. Dias, Int. J. Biol. Macromol. (2017) https://doi.org/10.1016/j.ijbiomac.2017.06.095

    Article  PubMed  Google Scholar 

  66. D. Trombetta, F. Castelli, M.G. Sarpietro, V. Venuti, M. Cristani, C. Daniele, A. Saija, G. Mazzanti, G. Bisignano, Antimicrob. Agents Chemother. (2005) https://doi.org/10.1128/AAC.49.6.2474-2478.2005

    Article  PubMed  PubMed Central  Google Scholar 

  67. C.H. Saida, Z. Imane, S. Fairouz, B. Nabahat, M.C. González-Mas, M.A. Blázquez, R.A. Mhand, A. Mohamed, Mediterr. J. Chem. (2020) https://doi.org/10.13171/mjc10602006231292iz

    Article  Google Scholar 

  68. N.Y. Saad, C.D. Muller, A. Lobstein, Flavour. Fragr. J. (2013) https://doi.org/10.1002/ffj.3165

    Article  Google Scholar 

  69. F. Reyes-Jurado, A.R. Navarro-Cruz, C.E. Ochoa-Velasco, E. Palou, A. López-Malo, R. Ávila-Sosa, Crit. Rev. Food Sci. Nutr. (2020) https://doi.org/10.1080/10408398.2019.1586641

    Article  PubMed  Google Scholar 

  70. A.K. Tyagi, A. Malik, Int. J. Food Microbiol. (2010) https://doi.org/10.1016/j.ijfoodmicro.2010.08.023

    Article  PubMed  Google Scholar 

  71. P. Kloucek, J. Smid, A. Frankova, L. Kokoska, I. Valterova, R. Pavela, Int. Food Res. J. (2012) https://doi.org/10.1016/j.foodres.2011.04.044

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to FURG’s CEME-Sul for SEM analyses.

Funding

This study was financed by FAPERGS (16/2551-0000250-9), CAPES (Finance Code 001) and CNPq.

Author information

Authors and Affiliations

Authors

Contributions

MRVF: Conceptualization, investigation, writing ? original draft preparation, methodology, laboratory practice, data curation, visualization. CRC: Resources, laboratory practice, conceptualization, writing ? reviewing and editing. CCM: Project administration, supervision, formal analysis, validation, writing ? reviewing and editing. ERZ: Project administration, supervision, writing ? reviewing and editing. ARGD: Project administration, supervision, writing ? reviewing and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Milena Ramos Vaz Fontes.

Ethics declarations

Ethics approval and consent to participate

The study in question was not submitted/evaluated by the ethics committee because tests on animals and humans were not performed.

Conflict of interest

On behalf of all the authors of the manuscript entitled “Antimicrobial properties of PLA membranes loaded with pink pepper (Schinus terebinthifoliusRaddi) essential oil applied in simulated cream cheese packaging”, I confirm that we have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fontes, M.R.V., Contessa, C.R., Moraes, C.C. et al. Antimicrobial properties of PLA membranes loaded with pink pepper (Schinus terebinthifolius Raddi) essential oil applied in simulated cream cheese packaging. Food Biophysics (2022). https://doi.org/10.1007/s11483-022-09750-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11483-022-09750-x

Keywords

  • Hydrophobic character
  • Myrcene
  • Active packaging
  • Pink pepper
  • PLA