Skip to main content

Incorporation of the Sterol from Camellia Oil Deodorant Distillate into vitamin C Liposomes: Vesicle Characteristics, Stability, Release, and Bioavailability

Abstract

It is an emerging trend to adopt cholesterol analogues from botanical sterols as membrane stabilizers of liposomes. This work investigated the potential of using purified sterol from camellia oil deodorant distillate as the membrane stabilizer for vitamin C liposomes. At the same time, β-sitosterol, stigmasterol, and cholesterol served as the control. The effect of sterols on vesicle properties, liposomes stability, vitamin C release, and bioavailability was assessed. When purified sterol was incorporated, the properties of these vesicles were comparable to those of the vesicles with β-sitosterol incorporated. However, the incorporation of stigmasterol was not conducive to vesicles dispersion. The storage, thermal, and pH stability, encapsulation efficiency, and bioavailability of vitamin C in liposomes were improved with purified sterol incorporated. In addition, the vitamin C in liposomes containing purified sterol showed a slower release. The release of vitamin C from liposomes containing purified sterols followed a first-order kinetic model. Fickian diffusion governed the release mechanism. The results suggested that purified sterol was a potential replacer for cholesterol as the stabilizer for liposomes, which was beneficial for developing low-cholesterol liposomes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Availability of Data and Material

The datasets used or analyzed during the current study is available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. A. Hassane Hamadou, W.-C. Huang, C. Xue, X. Mao, LWT-Food Sci. Technol. 127, 109439 (2020)

    CAS  Article  Google Scholar 

  2. J. Du, J.J. Cullen, G.R. Buettner, Biochim. Biophys. Acta-Rev Cancer 1826(2), 443–457 (2012)

    CAS  Article  Google Scholar 

  3. S. Emami, S. Azadmard-Damirchi, S.H. Peighambardoust, H. Valizadeh, J. Hesari, J. Exp. Nanosci. 11(9), 737–759 (2016)

    CAS  Article  Google Scholar 

  4. Z. Jiao, X. Wang, Y. Yin, J. Xia, Y. Mei, J. Microencapsul. 35(3), 272–280 (2018)

    CAS  PubMed  Article  Google Scholar 

  5. P. Kumar Vemula, U. Aslam, V. Ajay Mallia, G. John, Chem. Mat. 19(2), 138–140 (2007)

    Article  CAS  Google Scholar 

  6. B. Rozman, A. Zvonar, F. Falson, M. Gasperlin, AAPS PharmSciTech 10(1), 54–61 (2009)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Y. Wang, Y. Shi, X. Xu et al., C. Surf, A-Physicochem Eng. Asp 345(1), 71–74 (2009)

    CAS  Article  Google Scholar 

  8. J.-H. Yang, S.-Y. Lee, Y.-S. Han, K.-C. Park, J.-H. Choy, Bull. Korean Chem. Soc. 24(4), 499–503 (2003)

    CAS  Article  Google Scholar 

  9. M. Alexander, A. Acero Lopez, Y. Fang, M. Corredig, LWT-Food Sci. Technol. 47(2), 427–436 (2012)

    CAS  Article  Google Scholar 

  10. S. Yang, W. Liu, C. Liu et al., J. Dispersion Sci. Technol. 33(11), 1608–1614 (2012)

    CAS  Article  Google Scholar 

  11. D.J. McClements, J. Food Sci. 80(7), 1602–1611 (2015)

    Article  CAS  Google Scholar 

  12. K. Tai, M. Rappolt, X. He et al., Food Chem. 293, 92–102 (2019)

    CAS  PubMed  Article  Google Scholar 

  13. E. Khanniri, N. Bagheripoor-Fallah, S. Sohrabvandi, A.M. Mortazavian, K. Khosravi-Darani, R. Mohammad, Crit. Rev. Food Sci. Nutr. 56(3), 484–493 (2016)

    CAS  PubMed  Article  Google Scholar 

  14. K. Tai, F. Liu, X. He et al., Food Res. Int. 109, 24–34 (2018)

    CAS  PubMed  Article  Google Scholar 

  15. A. Karewicz, D. Bielska, A. Loboda et al., Colloid Surf. B-Biointerfaces 109, 307–316 (2013)

    CAS  Article  Google Scholar 

  16. L.G. Gómez-Mascaraque, C. Casagrande Sipoli, L.G. de La Torre, A. López-Rubio, Food Chem. 233, 343–350 (2017)

    PubMed  Article  CAS  Google Scholar 

  17. M. Frenzel, A. Steffen-Heins, Food Chem. 173, 1090–1099 (2015)

    CAS  PubMed  Article  Google Scholar 

  18. M. Manconi, M.L. Manca, D. Valenti et al., Int. J. Pharm. 525(1), 203–210 (2017)

    CAS  PubMed  Article  Google Scholar 

  19. W. Liu, W. Liu, A. Ye et al., Food Chem. 196, 396–404 (2016)

    CAS  PubMed  Article  Google Scholar 

  20. W. Zhou, W. Liu, L. Zou et al., Colloid Surf. B-Biointerfaces 117, 330–337 (2014)

    CAS  Article  Google Scholar 

  21. S. Amiri, B. Ghanbarzadeh, H. Hamishehkar, M. Hosein, A. Babazadeh, P. Adun, Colloid Interface Sci. Commun. 26, 1–6 (2018)

    CAS  Article  Google Scholar 

  22. F. Yu, X. Tang, J. Nanosci. Nanotechnol 16(3), 3115–3121 (2016)

    CAS  PubMed  Article  Google Scholar 

  23. A.A. Jovanović, B.D. Balanč, V.B. Djordjević et al., Colloid Surf. B-Biointerfaces 183, 110422 (2019)

    Article  CAS  Google Scholar 

  24. J.-S. Hwang, Y.-L. Tsai, K.-C. Hsu, Food Res. Int. 43(1), 133–139 (2010)

    CAS  Article  Google Scholar 

  25. M. Cui, W. Wu, L. Hovgaard, Y. Lu, D. Chen, J. Qi, Int. J. Pharm. 489(1–2), 277–284 (2015)

    CAS  PubMed  Article  Google Scholar 

  26. A.A. Jovanović, B.D. Balanč, A. Ota et al., Eur. J. Lipid Sci. Technol. 120(9), 1800039 (2018)

    Article  CAS  Google Scholar 

  27. X. Liu, P. Wang, Y.-X. Zou, Z.-G. Luo, T.M. Tamer, Food Res. Int. 136, 109587 (2020)

    CAS  PubMed  Article  Google Scholar 

  28. B. Min, K.C. Nam, D.U. Ahn, Food Chem. 123(2), 231–236 (2010)

    CAS  Article  Google Scholar 

  29. Z. Li, S. Peng, X. Chen et al., Food Res. Int. 108, 246–253 (2018)

    CAS  PubMed  Article  Google Scholar 

  30. Q. Wang, H. Zhang, J. Huang, N. Xia, T. Li, Q. Xia, J. Microencapsul. 35(1), 90–101 (2018)

    PubMed  Article  CAS  Google Scholar 

  31. T. Li, S. Yang, W. Liu et al., Int. J. Food Prop. 18(1), 113–124 (2014)

    Article  CAS  Google Scholar 

  32. S. Kaddah, N. Khreich, F. Kaddah, C. Charcosset, H. Greige-Gerges, Food Chem. Toxicol. 113, 40–48 (2018)

    CAS  PubMed  Article  Google Scholar 

  33. K. Abe, K. Higashi, K. Watabe et al., C. Surf, A-Physicochem Eng. Asp 474, 63–70 (2015)

    CAS  Article  Google Scholar 

  34. C. Chen, C.P. Tripp, Biochim. Biophys. Acta-Biomembr 1818(7), 1673–1681 (2012)

    CAS  Article  Google Scholar 

  35. Z. Rafiee, M. Barzegar, M.A. Sahari, B. Maherani, Food Chem. 220, 115–122 (2017)

    CAS  PubMed  Article  Google Scholar 

  36. C. Tan, B. Feng, X. Zhang, W. Xia, S. Xia, Food Hydrocoll. 52, 774–784 (2016)

    CAS  Article  Google Scholar 

  37. L. Zou, S. Peng, W. Liu et al., Food Res. Int. 64, 492–499 (2014)

    CAS  PubMed  Article  Google Scholar 

  38. N. Kahya, P. Schwille, J. Fluoresc 16(5), 671–678 (2006)

    CAS  PubMed  Article  Google Scholar 

  39. E. Kočišová, A. Antalík, M. Procházka, Chem. Phys. Lipids 172–173, 1–5 (2013)

    PubMed  Article  CAS  Google Scholar 

  40. X. Hu, B. Wei, H. Li et al., Carbohydr. Polym. 90(2), 1193–1196 (2012)

    CAS  PubMed  Article  Google Scholar 

  41. B. Yan, S.M. Davachi, R. Ravanfar et al., Food Hydrocoll. 113, 106414 (2021)

    CAS  Article  Google Scholar 

  42. C. Yohannan Panicker, H. Tresa Varghese, D. Philip, Spectroc. Acta Pt. A-Molec. Biomolec Spectr. 65(3–4), 802–804 (2006)

    CAS  Article  Google Scholar 

  43. L. Pan, S. Zhang, K. Gu, N. Zhang, CyTA-J. Food 16(1), 607–618 (2018)

    CAS  Article  Google Scholar 

  44. A.F.A. Aisha, A.M.S.A. Majid, Z. Ismail, BMC Biotechnol. 14(1), 23 (2014)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. G. Smistad, S. Bøyum, S.J. Alund, A.B.C. Samuelsen, M. Hiorth, Carbohydr. Polym. 90(3), 1337–1344 (2012)

    CAS  PubMed  Article  Google Scholar 

  46. T. Hernandez-Caselles, J. Villalain, J.C. Gomez-Fernandez, J. Pharm. Pharmacol. 42(6), 397–400 (1990)

    CAS  PubMed  Article  Google Scholar 

  47. S.K. Peng, P. Tham, C.B. Taylor, B. Mikkelson, Am. J. Clin. Nutr. 32(5), 1033–1042 (1979)

    CAS  PubMed  Article  Google Scholar 

  48. S.K. Lee, A.A. Kader, Postharvest Biol. Technol. 20(3), 207–220 (2000)

    CAS  Article  Google Scholar 

  49. M. Grit, D.J. Crommelin, Chem. Phys. Lipids 64(1–3), 3–18 (1993)

    CAS  PubMed  Article  Google Scholar 

  50. C. Dong, J. Rogers, J. Control Release 17(3), 217–224 (1991)

    CAS  Article  Google Scholar 

  51. C. Decker, A. Fahr, J. Kuntsche, S. May, Chem. Phys. Lipids 165(5), 520–529 (2012)

    CAS  PubMed  Article  Google Scholar 

  52. M.-A. Hartmann, Trends Plant. Sci. 3(5), 170–175 (1998)

    Article  Google Scholar 

  53. Y. Takechi-Haraya, K. Sakai-Kato, Y. Abe, T. Kawanishi, H. Okuda, Y. Goda, Langmuir 32(24), 6074–6082 (2016)

    CAS  PubMed  Article  Google Scholar 

  54. H. Saito, W. Shinoda, J. Phys. Chem. B 115(51), 15241–15250 (2011)

    CAS  PubMed  Article  Google Scholar 

  55. L.F. Aguilar, J.A. Pino, M.A. Soto-Arriaza, F.J. Cuevas, S. Sanchez, C.P. Sotomayor, PLoS One 7(6), 40254 (2012)

    Article  CAS  Google Scholar 

  56. M. Barani, M.H. Nematollahi, M. Zaboli et al., Mater. Sci. Eng. C 94, 234–246 (2019)

    CAS  Article  Google Scholar 

  57. S. Dash, P.N. Murthy, L. Nath, P. Chowdhury, ACTA POL. PHARM. 67(3), 217 (2010)

    CAS  PubMed  Google Scholar 

  58. N. Kumar, S. Soni, T. Singh et al., AAPS PharmSciTech 16(6), 1270–1280 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. E. Fernández-García, I. Carvajal-Lérida, A. Pérez-Gálvez, Nutr. Res. 29(11), 751–760 (2009)

    PubMed  Article  CAS  Google Scholar 

  60. C. Cheng, S. Peng, Z. Li, L. Zou, W. Liu, C. Liu, RSC Adv. 7(42), 25978–25986 (2017)

    CAS  Article  Google Scholar 

  61. A. Pérez-Vicente, A. Gil-Izquierdo, C. García-Viguera, J. Agric. Food Chem. 50(8), 2308–2312 (2002)

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Forestry Science and Technology Innovation Project of Guangdong Province (2017KJCX005).

Funding

This work was supported by the Forestry Science and Technology Innovation Project of Guangdong Province (2017KJCX005).

Author information

Authors and Affiliations

Authors

Contributions

Xixian Xiao: Term, Methodology, Formal analysis, Investigation, Writing - Original Draft. Xuehui Wu: Conceptualization, Resources, Project administration, Writing - Review & Editing, Supervision, Funding acquisition. Zhiliang Yu: Investigation, Instrumental analysis. Junhua He: Investigation, Data collection.

Corresponding author

Correspondence to Xuehui Wu.

Ethics declarations

Conflict of Interest

The authors declare no potential conflicts of interest to the manuscript entitled “Incorporation of the sterol from camellia oil deodorant distillate into vitamin C liposomes: vesicle characteristics, stability, release, and bioavailability.”

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Wu, X., Yu, Z. et al. Incorporation of the Sterol from Camellia Oil Deodorant Distillate into vitamin C Liposomes: Vesicle Characteristics, Stability, Release, and Bioavailability. Food Biophysics (2022). https://doi.org/10.1007/s11483-022-09743-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11483-022-09743-w

Keywords

  • camellia oil deodorant distillate
  • Vitamin C liposomes
  • Sterol
  • Vesicle characteristics
  • Release