Skip to main content
Log in

The Ribbon Stage—Shedding Light onto an Ill-Defined Culinary ‘Marker’ for Whole Egg Foams

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The “ribbon stage” is an important culinary marker that is a critical intermediary step for many pastry recipes. The term refers to foams prepared from whole eggs and sugar which, after some time of whipping, have the distinguishing behavior of falling back into the bowl in the shape of a ribbon without readily blending into the rest of the batter. Ribbon stage foams are unusual because they are prepared with whole eggs. Whole egg foams have been studied to a limited extent, and the ribbon stage remains uncharacterized. Here we report on the physical and chemical properties of the ribbon stage, and explore how thermal and mechanical treatments affect them. We show that the ribbon stage is a metastable, non-Newtonian foam, which is frequency dependent and shear-thinning. It has an overrun of ~ 310%, an air phase fraction of 0.76, and about half of its bubbles are below 25 µm in diameter. Further, we show that thermal pre-treatment is essential to reach the ribbon stage. Both under-heating (< 45ºC) and under-whipping (< 7 min) produces unstable foams with a heterogenous bubble size distribution, indicating that partial protein unfolding could be important for stabilization and adsorption, and that sufficient shear is necessary to create surface area and smaller bubbles. We also show that over-heating and over-whipping, although leading to stable foams, have lower foamability and viscoelasticity. Our findings can support consistent reproduction of high-quality foams by chefs, amateur bakers, and manufacturers, as well as the development of sustainable egg substitutes with comparable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Anastopolo, What does ‘ribbon stage’ mean? | King Arthur Baking. https://www.kingarthurbaking.com/blog/2020/09/16/what-does-ribbon-stage-mean (Accessed 29 Apr 2021).

  2. CooksInfo, Ribbon Stage, CooksInfo, Jun. 27, 2004. https://www.cooksinfo.com/ribbon-stage (Accessed 10 Jun, 2021).

  3. Laws Of Baking, ribbon stage, Laws Of Baking, 2013. https://lawsofbaking.com/glossary/ribbon-stage/ (Accessed 10 Jun, 2021).

  4. C. Vega, A. Sanghvi, Cooking Literacy: Meringues as Culinary Scaffoldings. Food Biophys. 7(2), 103–113 (2012). https://doi.org/10.1007/s11483-011-9247-7

    Article  Google Scholar 

  5. T.K. Berry, X. Yang, E.A. Foegeding, Foams Prepared from Whey Protein Isolate and Egg White Protein: 2. Changes Associated with Angel Food Cake Functionality. J. Food Sci. 74(5), 269–277 (2009). https://doi.org/10.1111/j.1750-3841.2009.01178.x

    Article  CAS  Google Scholar 

  6. K. Lomakina, K. Míková, A study of the factors affecting the foaming properties of egg white &ndash; a review. Czech J. Food Sci. 24(3), 110–118 (2011). https://doi.org/10.17221/3305-CJFS

    Article  Google Scholar 

  7. C.W. Pernell, E.A. Foegeding, P.J. Luck, J.P. Davis, Properties of whey and egg white protein foams. Colloids Surf. Physicochem. Eng. Asp. 204(1–3), 9–21 (2002). https://doi.org/10.1016/S0927-7757(01)01061-5

    Article  CAS  Google Scholar 

  8. J. E. Spencer, M. G. Scanlon, and J. H. Page, “Drainage and Coarsening Effects on the Time-Dependent Rheology of Whole Egg and Egg White Foams and Batters,” in Bubbles in Food 2, Elsevier, 2008, pp. 117–129. https://doi.org/10.1016/B978-1-891127-59-5.50016-X.

  9. X. Yang, T.K. Berry, E.A. Foegeding, Foams Prepared from Whey Protein Isolate and Egg White Protein: 1. Physical, Microstructural, and Interfacial Properties. J. Food Sci. 74(5), E259–E268 (2009). https://doi.org/10.1111/j.1750-3841.2009.01179.x

    Article  CAS  PubMed  Google Scholar 

  10. S. Kawasome, S. Tamura, A. Nakao, Y. Yamano, Effect of Egg Yolk on the Retention of Air Cells in Butter Sponge Cake. J. Home Econ. Jpn. 40(4), 279–285 (1989). https://doi.org/10.11428/jhej1987.40.279

    Article  Google Scholar 

  11. I. Allais, R.-B. Edoura-Gaena, J.-B. Gros, G. Trystram, Influence of egg type, pressure and mode of incorporation on density and bubble distribution of a lady finger batter. J. Food Eng. 74(2), 198–210 (2006). https://doi.org/10.1016/j.jfoodeng.2005.03.014

    Article  Google Scholar 

  12. G.M. Campbell, P.J. Martin, Bread aeration and dough rheology: an introduction, in Breadmaking: Improving Quality, 2nd edn., ed. by S.P. Cauvain (Woodhead Publ Ltd, Cambridge, 2012), pp. 299–336

    Chapter  Google Scholar 

  13. E.A. Olszewski, From baking a cake to solving the diffusion equation. Am. J. Phys. 74(6), 502–509 (2006). https://doi.org/10.1119/1.2186330

    Article  Google Scholar 

  14. B.S. Murray, Recent developments in food foams. Curr. Opin. Colloid Interface Sci. 50, 101394 (2020). https://doi.org/10.1016/j.cocis.2020.101394

    Article  CAS  Google Scholar 

  15. E. Wilderjans, A. Luyts, K. Brijs, J.A. Delcour, Ingredient functionality in batter type cake making. Trends Food Sci. Technol. 30(1), 6–15 (2013). https://doi.org/10.1016/j.tifs.2013.01.001

    Article  CAS  Google Scholar 

  16. S. Damodaran, Protein Stabilization of Emulsions and Foams. J. Food Sci. 70(3), R54–R66 (2006). https://doi.org/10.1111/j.1365-2621.2005.tb07150.x

    Article  Google Scholar 

  17. T. Godefroidt, N. Ooms, B. Pareyt, K. Brijs, J.A. Delcour, Ingredient Functionality During Foam-Type Cake Making: A Review. Compr. Rev. Food Sci. Food Saf. 18(5), 1550–1562 (2019). https://doi.org/10.1111/1541-4337.12488

    Article  PubMed  Google Scholar 

  18. S.S. Sahi, J.M. Alava, Functionality of emulsifiers in sponge cake production. J. Sci. Food Agric. 83(14), 1419–1429 (2003). https://doi.org/10.1002/jsfa.1557

    Article  CAS  Google Scholar 

  19. T.F. Buhl, C.H. Christensen, M. Hammershøj, Aquafaba as an egg white substitute in food foams and emulsions: Protein composition and functional behavior. Food Hydrocoll. 96, 354–364 (2019). https://doi.org/10.1016/j.foodhyd.2019.05.041

    Article  CAS  Google Scholar 

  20. İ Çelik, Y. Yılmaz, F. Işık, Ö. Üstün, Effect of soapwort extract on physical and sensory properties of sponge cakes and rheological properties of sponge cake batters. Food Chem. 101(3), 907–911 (2007). https://doi.org/10.1016/j.foodchem.2006.02.063

    Article  CAS  Google Scholar 

  21. P. Jurado Gonzalez and P. M. Sörensen, Characterization of saponin foam from Saponaria officinalis for food applications, Food Hydrocoll., 101, 105541, 2020, https://doi.org/10.1016/j.foodhyd.2019.105541.

  22. K. Kirshenbaum, A. Guegan, and U. S. Cl, (73) Assignee: NS York University, New York, NY, 21.

  23. K. Rahmati, M. Mazaheri Tehrani, and K. Daneshvar, Soy milk as an emulsifier in mayonnaise: physico-chemical, stability and sensory evaluation. J. Food Sci. Technol., 51(11), 3341–3347, (2014), https://doi.org/10.1007/s13197-012-0806-9.

  24. D. Chaboissier, Compagnon et maître pâtissie. France: Jerome Villette, 1999.

  25. A. Ducasse, Grand Livre de Cuisine d’Alain Ducasse. France: LEC (Les Editions Culinaires) (2004).

  26. C. Felder, Patisserie. Editions de la Martinière (2016).

  27. P. Hermé, Secrets Gourmands. Paris, FR: Agnès Viénot Editions, (2002).

  28. Le Cordon Blue, LE CORDON BLEU. PASTRY SCHOOL. UK: Grub Street, (2018).

  29. J. Robuchon and M. Prosper, Larrouse gastronomique. New York, US: Clarkson Potter (2001).

  30. A. Raymundo, J. Empis, I. Sousa, Method to evaluate foaming performance. J. Food Eng. 36(4), 445–452 (1998). https://doi.org/10.1016/S0260-8774(98)00063-6

    Article  Google Scholar 

  31. P. Ptaszek, D. Żmudziński, J. Kruk, K. Kaczmarczyk, W. Rożnowski, W. Berski, The Physical and Linear Viscoelastic Properties of Fresh Wet Foams Based on Egg White Proteins and Selected Hydrocolloids. Food Biophys. 9(1), 76–87 (2014). https://doi.org/10.1007/s11483-013-9320-5

    Article  PubMed  Google Scholar 

  32. L.G. Phillips et al., Standardized Procedure for Measuring Foaming Properties of Three Proteins, A Collaborative Study. J. Food Sci. 55(5), 1441–1444 (1990). https://doi.org/10.1111/j.1365-2621.1990.tb03953.x

    Article  CAS  Google Scholar 

  33. A. Dan, G. Gochev, J. Krägel, E.V. Aksenenko, V.B. Fainerman, R. Miller, Interfacial rheology of mixed layers of food proteins and surfactants. Curr. Opin. Colloid Interface Sci. 18(4), 302–310 (2013). https://doi.org/10.1016/j.cocis.2013.04.002

    Article  CAS  Google Scholar 

  34. D. Agrahar-Murugkar, A. Zaidi, N. Kotwaliwale, C. Gupta, Effect of Egg-Replacer and Composite Flour on Physical Properties, Color, Texture and Rheology, Nutritional and Sensory Profile of Cakes. J. Food Qual. 39(5), 425–435 (2016). https://doi.org/10.1111/jfq.12224

    Article  CAS  Google Scholar 

  35. R.S. Powale, A.P. Andheria, S.S. Maghrabi, S.S. Bhagwat, A Novel Method for Evaluating Foam Properties. J. Dispers. Sci. Technol. 26(5), 597–603 (2005). https://doi.org/10.1081/DIS-200057663

    Article  CAS  Google Scholar 

  36. R. Rafati, A.S. Haddad, H. Hamidi, Experimental study on stability and rheological properties of aqueous foam in the presence of reservoir natural solid particles. Colloids Surf. Physicochem. Eng. Asp. 509, 19–31 (2016). https://doi.org/10.1016/j.colsurfa.2016.08.087

    Article  CAS  Google Scholar 

  37. D. Daugelaite, R.-M. Guillermic, M.G. Scanlon, J.H. Page, Quantifying liquid drainage in egg-white sucrose foams by resistivity measurements. Colloids Surf. Physicochem. Eng. Asp. 489, 241–248 (2016). https://doi.org/10.1016/j.colsurfa.2015.10.053

    Article  CAS  Google Scholar 

  38. J. Bergfreund, P. Bertsch, P. Fischer, Adsorption of proteins to fluid interfaces: Role of the hydrophobic subphase. J. Colloid Interface Sci. 584, 411–417 (2021). https://doi.org/10.1016/j.jcis.2020.09.118

    Article  CAS  PubMed  Google Scholar 

  39. A. Fillery-Travis, E. N. C. Mills, and P. Wilde, Protein-lipid interactions at interfaces, Grasas Aceites, 51(1–2), Art. no. 1–2, 2000, https://doi.org/10.3989/gya.2000.v51.i1-2.406.

  40. P. Wilde, A. Mackie, F. Husband, P. Gunning, V. Morris, Proteins and emulsifiers at liquid interfaces. Adv. Colloid Interface Sci. 108–109, 63–71 (2004). https://doi.org/10.1016/j.cis.2003.10.011

    Article  CAS  PubMed  Google Scholar 

  41. C. Russell, A.A. Zompra, G.A. Spyroulias, K. Salek, S.R. Euston, The heat stability of Rhamnolipid containing egg-protein stabilised oil-in-water emulsions. Food Hydrocoll. 116, 106632 (2021). https://doi.org/10.1016/j.foodhyd.2021.106632

    Article  CAS  Google Scholar 

  42. S. Rouimi, C. Schorsch, C. Valentini, S. Vaslin, Foam stability and interfacial properties of milk protein–surfactant systems. Food Hydrocoll. 19, 467–478 (2005). https://doi.org/10.1016/j.foodhyd.2004.10.032

    Article  CAS  Google Scholar 

  43. E.A. Foegeding, P.J. Luck, J.P. Davis, Factors determining the physical properties of protein foams. Food Hydrocoll. 20(2–3), 284–292 (2006). https://doi.org/10.1016/j.foodhyd.2005.03.014

    Article  CAS  Google Scholar 

  44. J. Maldonado-Valderrama, A. Martín-Molina, A. Martín-Rodriguez, M.A. Cabrerizo-Vílchez, M.J. Gálvez-Ruiz, D. Langevin, Surface Properties and Foam Stability of Protein/Surfactant Mixtures: Theory and Experiment. J. Phys. Chem. C 111(6), 2715–2723 (2007). https://doi.org/10.1021/jp067001j

    Article  CAS  Google Scholar 

  45. V. Aken and G. A, Aeration of emulsions by whipping. Colloids Surf. Physicochem. Eng. Asp., 190(3), 333–354, 2001.

  46. C.K. Lau, E. Dickinson, Instability and structural change in an aerated system containing egg albumen and invert sugar. Food Hydrocoll. 19(1), 111–121 (2005). https://doi.org/10.1016/j.foodhyd.2004.04.020

    Article  CAS  Google Scholar 

  47. M. Ferreira, C. Hofer, A. Raemy, A calorimetric study of egg white proteins. J. Therm. Anal. 48(3), 683–690 (1997). https://doi.org/10.1007/BF01979514

    Article  CAS  Google Scholar 

  48. J.E. Kinsella, Functional properties of proteins: Possible relationships between structure and function in foams. Food Chem. 7(4), 273–288 (1981). https://doi.org/10.1016/0308-8146(81)90033-9

    Article  CAS  Google Scholar 

  49. Y.-F. Liu, I. Oey, P. Bremer, A. Carne, P. Silcock, Modifying the Functional Properties of Egg Proteins Using Novel Processing Techniques: A Review. Compr. Rev. Food Sci. Food Saf. 18(4), 986–1002 (2019). https://doi.org/10.1111/1541-4337.12464

    Article  CAS  PubMed  Google Scholar 

  50. J.M. Whittinghill, J. Norton, A. Proctor, A fourier transform infrared spectroscopy study of the effect of temperature on soy lecithin-stabilized emulsions. J. Am. Oil Chem. Soc. 76(12), 1393–1398 (1999). https://doi.org/10.1007/s11746-999-0174-4

    Article  CAS  Google Scholar 

  51. N. Gharbi, M. Labbafi, A. Madadlou, Effect of heat treatment on foaming properties of ostrich (Struthio camelus) egg white proteins. Int. J. Food Prop. 20(12), 3159–3169 (2017). https://doi.org/10.1080/10942912.2017.1280676

    Article  CAS  Google Scholar 

  52. E. Ibanoglu, E. Erçelebi, Thermal denaturation and functional properties of egg proteins in the presence of hydrocolloid gums. Food Chem. 101, 626–633 (2007). https://doi.org/10.1016/j.foodchem.2006.01.056

    Article  CAS  Google Scholar 

  53. A.L. Ellis, T.B. Mills, I.T. Norton, A.B. Norton-Welch, The effect of sugars on agar fluid gels and the stabilisation of their foams. Food Hydrocoll. 87, 371–381 (2019). https://doi.org/10.1016/j.foodhyd.2018.08.027

    Article  CAS  Google Scholar 

  54. M. Nastaj, S. Mleko, K. Terpiłowski, M. Tomczyńska-Mleko, Effect of Sucrose on Physicochemical Properties of High-Protein Meringues Obtained from Whey Protein Isolate. Appl. Sci. 11(11), 4764 (2021). https://doi.org/10.3390/app11114764

    Article  CAS  Google Scholar 

  55. C.W. Pernell, E. Foegeding, C. Daubert, Measurement of the Yield Stress of Protein Foams by Vane Rheometry. J. Food Sci. - J Food Sci 65, 110–114 (2000). https://doi.org/10.1111/j.1365-2621.2000.tb15964.x

    Article  CAS  Google Scholar 

  56. A. Sun, S. Gunasekaran, Yield Stress in Foods: Measurements and Applications. Int. J. Food Prop. 12(1), 70–101 (2009). https://doi.org/10.1080/10942910802308502

    Article  Google Scholar 

  57. J.-Y. Hwang, Y. Shin Shyu, L.-T. Yeh, and W.-C. Sung, Study on Sponge Cake Qualities Made from Hen, Duck and Ostrich Eggs. J. Food Nutr. Res. 6(2), 110–115 (2018), https://doi.org/10.12691/jfnr-6-2-7.

Download references

Acknowledgements

We thank the Harvard Materials Research and Science and Engineering Center (supported by NSF award DMR 14-20570) at the John A. Paulson School of Engineering and Applied Sciences for the use of rheometers. We also thank Anqi Chen at John A. Paulson School of Engineering and Applied Sciences at Harvard University for helpful discussions on the analysis of microscopy experiments, Dr. Axel Bidon at University of Barcelona, Spain, for generously providing lab space for the pilot experiments, Dr. Juan Carlos Arboleya at University of Mondragon, Basque Culinary Center, for discussions about the rheological data, Pau Llorens at Autonomous University of Barcelona for assistance analyzing microscopy images, and finally Shimadzu Corporation for providing their EZ-SX Texture Analyzer to the Science and Cooking lab at Harvard with which the experiments in this study were performed.

Funding

National Science Foundation [grant number DMR 14–20570] (which supports Harvard Materials Research and Science and Engineering Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pia M. Sörensen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

- Physico-chemical properties of a previously uncharacterized culinary marker

- Ribbon stage is a non-Newtonian, elastic (G'>G'' at 1Hz) and shear-thinning foam

- At ribbon stage, overrun is 310%, air fraction is 0.76, 40% of bubbles are <25µm

- Pre-heating the egg/sugar mixture is necessary for stable and elastic foams

- Too much shear/heat gives low elasticity/low overrun; too little gives unstable foams

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1577 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurado-Gonzalez, P., Vega, C., Morató, R. et al. The Ribbon Stage—Shedding Light onto an Ill-Defined Culinary ‘Marker’ for Whole Egg Foams. Food Biophysics 17, 397–408 (2022). https://doi.org/10.1007/s11483-022-09731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-022-09731-0

Keywords

Navigation