Abstract
Egg yolk granule is the sedimentary protein fraction of egg yolk. Granules are supramolecular assembly of high-density lipoprotein and phosvitin driven by Ca2+ bridges. Despite for high nutrition value and potential interfacial activity, the large particle size and poor colloidal stability severely restricted the functionality and industrial applications of granules. This study tried to dissociate granules with calcium chelators to improve their water dispersity and interfacial activity. The results showed that Na5O10P3, EDTA-2Na, and C6H5Na3O7 could dissociate micro-sized granules into nanoparticles with good colloidal stability at pH 7.0. The dissociation effect was less obvious or absent at pH 5.5 and pH 3.0. The non-protein binding Ca2+ concentration analysis confirmed that calcium chelators dissociated granules by chelating Ca2+ and disrupting Ca2+ bridges. FTIR and SDS-PAGE demonstrated that calcium chelators-induced dissociation was a physical process without any changes in chemical bonds or protein profiles of granules. The interfacial activity of dissociated granules was significantly improved. Dissociated granules could reduce the interfacial tension at the hexane-water interface more effectively. Emulsions prepared by dissociated granules showed small particle size and improved storage stability. The results of this study are beneficial to deep processing of egg yolk and applications of granules as a healthy emulsifier.
Highlights
-
Na5O10P3, EDTA-2Na, and C6H5Na3O7 could dissociate granules at pH 7.0
-
Mechanisms of calcium chelators induced dissociation were investigated
-
Calcium chelators dissociated granules by disrupting Ca2+ bridges
-
Dissociation did not change chemical bonds or protein compositions of granules
-
Dissociated granules demonstrated improved interfacial activity







Similar content being viewed by others
References
X. Huang, D.U. Ahn, J. Food Sci. 84(2), 205–212 (2019)
A. Laca, B. Paredes, M. Rendueles, M. Diaz, LWT-Food Sci. Technol. 59(1), 1–5 (2014)
J. Li, J. Zhai, L. Gu, et al., Trends Food Sci. Technol. (2021)
M. Le Denmat, M. Anton, V. Beaumal, Food Hydrocoll. 14(6), 539–549 (2000)
I. Marcet, S. Sáez-Orviz, M. Rendueles, M. Díaz, LWT-Food Sci. Technol. 153 (2022)
M. Anton, V. Martinet, M. Dalgalarrondo, V. Beaurnal, E. David-Briand, H. Rabesona, Food Chem. 83(2), 175–183 (2003)
M. Zhou, T. Wang, Q. Hu, Y. Luo, Food Hydrocoll. 57, 20–29 (2016)
M. Anton, J. Sci. Food Agric. 93(12), 2871–2880 (2013)
T. Strixner, J. Sterr, U. Kulozik, R. Gebhardt, Food Biophys. 9(4), 314–321 (2014)
D. Causeret, E. Matringe, D. Lorient, J. Food Sci. 57(6), 1323–1326 (1992)
A. Laca, M.C. Sáenz, B. Paredes, M. Díaz, J. Food Eng. 97(2), 243–252 (2010)
I. Marcet, B. Paredes, M. Diaz, LWT-Food Sci. Technol. 62(1), 613–619 (2015)
M. Zhou, Q. Hu, T. Wang, J. Xue, Y. Luo, Food Hydrocoll. 77, 204–211 (2018)
I. Marcet, C. Álvarez, B. Paredes, M. Rendueles, M. Díaz, Food Bioprocess Technol. 11(4), 735–747 (2017)
S. Sáez-Orviz, I. Marcet, M. Rendueles, M. Díaz, Food Hydrocoll. 119 (2021)
M. Anton, G. Gandemer, J. Food Sci. 62(3), 484–487 (1997)
M. Bautista Villarreal, C.T. Gallardo Rivera, E. Garcia Marquez, et al., Molecules 23(12) (2018)
F. Geng, Y. Xie, Y. Wang, J. Wang, Food Chem. 354, 129580 (2021)
P. Duffuler, M. Giarratano, N. Naderi, et al., Food Chem. 321, 126696 (2020)
Q. Li, S. Tang, F.K. Mourad, W. Zou, L. Lu, Z. Cai, Food Hydrocoll. 101 (2020)
F. Rehan, N. Ahemad, M. Gupta, Colloids Surf. B: Biointerfaces 179, 280–292 (2019)
I. Choi, Q. Zhong, Food Chem. 344, 128639 (2021)
I. Choi, Q. Zhong, J. Dairy Sci. 103(11), 9868–9880 (2020)
C. Au, N.C. Acevedo, H.T. Horner, T. Wang, J. Agric. Food Chem. 63(46), 10170–10180 (2015)
T. Li, H. Su, J. Zhu, Y. Fu, Food Chem. 371 (2022)
C. Zhang, Y. Fu, Z. Li, T. Li, Z. Li, Food Chem. 346, 128963 (2020)
J. Gao, X.-m. Li, F.-l. Chen, et al., Food Hydrocoll. 105 (2020)
G. Liu, M. Hu, X. Du, et al., Food Hydrocoll. 124 (2022)
L. Zhang, W.-F. Lin, Y. Zhang, C.-H. Tang, Food Hydrocoll. 124 (2022)
G. Liu, M. Hu, X. Du, et al., LWT-Food Sci. Technol. 154 (2022)
T. Li, Q. Zhong, T. Wu, Food Biophys. (2021)
L. Wu, T. Wu, J. Wu, et al., Food Hydrocoll. 58, 179–183 (2016)
D. Krilov, M. Balarin, M. Kosovic, O. Gamulin, J. Brnjas-Kraljevic, Spectrochim. Acta A Mol. Biomol. Spectrosc. 73(4), 701–706 (2009)
S. Fuertes, A. Laca, P. Oulego, B. Paredes, M. Rendueles, M. Díaz, Food Hydrocoll. 70, 229–239 (2017)
J.M. Sanchez-Ruiz, M. Martinez-Carrion, Biochemistry 27(9), 3338–3342 (1988)
Y. Yang, Y. Zhao, M. Xu, et al., Food Chem. 311, 125998 (2020)
J.l. Zhai, L. Day, M.-I. Aguilar, T.J. Wooster, Curr. Opin. Colloid Interface Sci. 18(4), 257–271 (2013)
D. Faulón Marruecos, D.K. Schwartz, J.L. Kaar, Curr., Opin. Colloid Interface Sci. 38, 45–55 (2018)
Acknowledgments
We thank Weichun Pan and Fuge Niu from the School of Food Science and Biotechnology, Zhejiang Gongshang University for the use of the fluorescence spectrometer. We thank Hunjun Xie from the School of Food Science and Biotechnology, Zhejiang Gongshang University for the use of the FTIR. This work is supported by the Hatch Project of Zhejiang Gongshang University 1110XJ2321001 and the National Natural Science Foundation of China 32172209.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Fu, Y., Yao, J., Su, H. et al. Effects of Calcium Chelators on Colloidal Stability and Interfacial Activity of Egg Yolk Granules. Food Biophysics 17, 302–313 (2022). https://doi.org/10.1007/s11483-022-09721-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11483-022-09721-2


