Skip to main content
Log in

Development of a Cotton Honey-Based Spread by Controlling Compositional and Processing Parameters

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Honey from cotton blossoms tends to crystallize rapidly resulting in a product with hard texture and low spreadability, even if it is processed via a controlled crystallization treatment that is often employed for production of creamed honey. The aim of this study was to develop a cotton honey-based spread (CHS) with acceptable physical and textural properties by adding fructose (1–6%) and water (up to 18% final moisture) into the initial cotton honey as well as controlling the temperature during crystallization, Tcryst (5–23 °C × 20 days) and a conditioning (tempering) step as a follow-up process, Tcond (20–30 °C × 10 days). Multi-instrumental analysis (rheometry, calorimetry, microscopy, colorimetry) and sensory (spreadability, mouthfeel) evaluation were used for characterization of textural properties of the CHS preparations. With increased fructose and water contents the CHS formulations exhibited significant (p < 0.05) lower Glucose/Water ratios (crystallinity index), steady shear and complex viscosities, hardness, spreadability work and melting enthalpy of sugar microcrystals, as well as improved organoleptic characteristics of this new spread product based on cotton honey. Moreover, with increasing Tcryst, only the lightness and the melting enthalpy decreased, while the damping factor increased. Instead, the Tcond did not affect any of the above parameters (p > 0.05). Strong correlations were identified between compositional, physicochemical attributes and sensory characteristics of the formulated product, implying that instrumental analyses of CHS along with sensory tests can be a valuable holistic approach for understanding the macrostructure, evaluating the physical properties and quality attributes, and predicting the consumer preference of the new spread product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.A. Machado De-Melo, L.B.D. Almeida-Muradian, M.T. Sancho, A. Pascual-Maté, Composition and properties of Apis melifera honey: A review. J. Apic. Res. 57, 5–37 (2017). https://doi.org/10.1080/00218839.2017.1338444

    Article  Google Scholar 

  2. M.M. Cavia, M.A. Fernandez-Muino, E. Gömez-Alonso, M.J. Montes-Pérez, J.F. Huidobro, M.T. Sancho, Evolution of fructose and glucose in honey over one year: influence of induced granulation. Food Chem. 78, 157–161 (2002). https://doi.org/10.1016/S0308-8146(01)00393-4

    Article  CAS  Google Scholar 

  3. M.A. Kamal, P. Klein, Determination of sugars in honey by liquid chromatography. Saudi J. Biol. Sci. 18, 17–21 (2011). https://doi.org/10.1016/j.sjbs.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  4. J. Wang, Q. X. Li, in Advances in Food and Nutrition Research, vol. 62, ed. by S. L. Taylor (Academic, 2011)

  5. J.W. White Jr, in Advances in Food Research, vol 24, ed. C.O. Chichester (Academic Press, 1978)

  6. R.A. Gleiter, H. Horn, H.D. Isengard, Influence of type and state of crystallization on the water activity of honey. Food Chem. 96, 441–445 (2006). https://doi.org/10.1016/j.foodchem.2005.03.051

    Article  CAS  Google Scholar 

  7. E. Venir, M. Spaziani, E. Maltini, Crystallization in “Tarassaco” Italian honey studied by DSC. Food Chem. 122, 410–415 (2010). https://doi.org/10.1016/j.foodchem.2009.04.012

    Article  CAS  Google Scholar 

  8. Council Directive (EC) 2001/11 of 20 December 2001 relating to honey. OJ L10/47-52

  9. S. Yanniotis, S. Skaltsi, S. Karaburnioti, Effect of moisture on the viscosity of honey at different temperatures. J. Food Eng. 72, 372–377 (2006). https://doi.org/10.1016/j.jfoodeng.2004.12.017

    Article  Google Scholar 

  10. M.C. Zamora, J. Chirife, Determination of water activity change due to crystallization in honeys from Argentina. Food Control 17, 59–64 (2006). https://doi.org/10.1016/j.foodcont.2004.09.003

    Article  CAS  Google Scholar 

  11. R.W. Hartel, A.V. Shastry, Sugar crystallization in food products. Crit. Rev. Food Sci. 30, 49–112 (1991). https://doi.org/10.1080/10408399109527541

    Article  CAS  Google Scholar 

  12. R.W. Hartel, R. Ergun, S. Vogel, Phase/state transitions of confectionery sweeteners: thermodynamic and kinetic aspects. Compr. Rev. Food Sci. Food Saf. 10, 17–32 (2011). https://doi.org/10.1111/j.1541-4337.2010.00136.x

    Article  CAS  Google Scholar 

  13. A. Saleki-Gerhardt, G. Zografi, Non-isothermal and isothermal crystallization of sucrose from the amorphous state. Pharm. Res. 11, 1166–1173 (1994). https://doi.org/10.1023/A:1018945117471

    Article  CAS  PubMed  Google Scholar 

  14. H. Kiani, D.W. Sun, Water crystallization and its importance to freezing in foods: a review. Trends Food Sci. Tech. 22, 407–426 (2011). https://doi.org/10.1016/j.tifs.2011.04.011

    Article  CAS  Google Scholar 

  15. E. Lopez-Quiroga, R. Wang, O. Gouseti, P.J. Fryer, S. Bakalis, Crystallisation in concentrated systems: A modelling approach. Food Bioprod. Process 100, 525–534 (2016). https://doi.org/10.1016/j.fbp.2016.07.007

    Article  CAS  Google Scholar 

  16. I. Manikis, A. Thrasivoulou, The relation of physicochemical characteristics of honey and the crystallization sensitive parameters. Apiacta 36, 106–122 (2001)

    Google Scholar 

  17. L. Slade, H. Levine, Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. 30, 115–360 (1991). https://doi.org/10.1080/10408399109527543

    Article  CAS  Google Scholar 

  18. H.I. Assil, R. Sterling, P. Sporns, Crystal control in processed liquid honey. J. Food Sci. 56, 1034–1037 (1991). https://doi.org/10.1111/j.1365-2621.1991.tb14635.x

    Article  CAS  Google Scholar 

  19. C.E. Lupano, DSC study of honey granulation stored at various temperatures. Food Res. Int. 30, 683–688 (1997). https://doi.org/10.1016/S0963-9969(98)00030-1

    Article  CAS  Google Scholar 

  20. N.A. Al-Habsi, F.J. Davis, K. Niranjan, Development of novel methods to determine crystalline glucose content of honey based on DSC, HPLC, and viscosity measurements, and their use to examine the setting propensity of honey. J. Food Sci. 78, E845–E852 (2013). https://doi.org/10.1111/1750-3841.12103

    Article  CAS  PubMed  Google Scholar 

  21. P.A. Sopade, P. Halley, B. Bhandari, B. D’Arcy, C. Doebler, N. Caffin, Application of the Williams-Landel-Ferry model to the viscosity-temperature relationship of Australian honeys. J. Food Eng. 56, 67–75 (2003). https://doi.org/10.1016/S0260-8774(02)00149-8

    Article  Google Scholar 

  22. A. Dettori, S. Tappi, L. Piana, M. Dalla Rosa, P. Rocculi, Kinetic of induced honey crystallization and related evolution of structural and physical properties. LWT-Food Sci. Technol. 95, 333–338 (2018). https://doi.org/10.1016/j.lwt.2018.04.092

    Article  CAS  Google Scholar 

  23. I. Dobre, L.A. Georgescu, P. Alexe, O. Escuredo, M.C. Seijo, Rheological behavior of different honey types from Romania. Food Res. Int. 49, 126–132 (2012). https://doi.org/10.1016/j.foodres.2012.08.009

    Article  CAS  Google Scholar 

  24. K. Laos, E. Kirs, R. Pall, K. Martverk, The crystallization behaviour of Estonian honeys. Agron. Res. 9, 427–432 (2011)

    Google Scholar 

  25. E.A. Tosi, E. Ré, H. Lucero, L. Bulacio, Effect of honey high-temperature short-time heating on parameters related to quality, crystallization phenomena and fungal inhibition. LWT-Food Sci. Technol. 37, 669–678 (2004). https://doi.org/10.1016/j.lwt.2004.02.005

    Article  CAS  Google Scholar 

  26. E.J. Dyce, in: Honey: A Comprehensive Survey, ed. E.E. Crane (Oxford University Press, New York, 1975)

  27. A.M. Abd Elhamid, H.F. Abou-Shaara, Producing clover and cotton creamed honey under cooling conditions and potential use as feeding to honey bee colonies. J. Apic. Res. 31, 135–142 (2016). https://doi.org/10.17519/apiculture.2016.04.31.1.59

    Article  Google Scholar 

  28. Y.W. Chen, C.H. Lin, F.Y. Wu, H.H. Chen, Rheological properties of crystallized honey prepared by a new type of nuclei. J. Food Process Eng. 32, 512–527 (2009). https://doi.org/10.1111/j.1745-4530.2007.00227.x

    Article  Google Scholar 

  29. S. Karasu, O.S. Toker, M.T. Yilmaz, S. Karaman, E. Dertli, Thermal loop test to determine structural changes and thermal stability of creamed honey: Rheological characterization. J. Food Eng. 150, 90–98 (2015). https://doi.org/10.1016/j.jfoodeng.2014.10.004

    Article  Google Scholar 

  30. E. Alissandrakis, A.C. Kibaris, P.A. Tarantilis, P.C. Harizanis, M. Polissiou, Flavour compounds of Greek cotton honey. J. Sci. Food Agr. 85, 1444–1452 (2005). https://doi.org/10.1002/jsfa.2124

    Article  CAS  Google Scholar 

  31. N.R. Draper, J.A. John, Response-surface designs for quantitative and qualitative factors. Technometrics 30, 423–428 (1988). https://doi.org/10.1080/00401706.1988.10488437

    Article  Google Scholar 

  32. International Honey Commission (IHC),  Harmonized methods of the international honey commission (2009), https://www.ihc-platform.net/ihcmethods2009.pdf

  33. A. Lazaridou, C.G. Biliaderis, N. Bacandritsos, A.G. Sabatini, Composition, thermal and rheological behaviour of selected Greek honeys. J Food Eng 64, 9–21 (2004). https://doi.org/10.1016/j.jfoodeng.2003.09.007

    Article  Google Scholar 

  34. A.I. Neguerela, C. Perez-Arquillue, Color measurement of rosemary honey in the solid state by reflectance spectroscopy with black background. J. AOAC Int. 83, 669–674 (2000). https://doi.org/10.1093/jaoac/83.3.669

    Article  Google Scholar 

  35. J. Chirife, M.C. Zamora, A. Motto, The correlation between water activity and % moisture in honey: fundamental aspects and application to Argentine honeys. J. Food Eng. 72, 287–292 (2006). https://doi.org/10.1016/j.jfoodeng.2004.12.009

    Article  Google Scholar 

  36. J. Tomaszewska-Gras, S. Bakier, K. Goderska, K. Mansfeld, Differential scanning calorimetry for determining the thermodynamic properties of selected honeys. J. Apic. Sci. 59, 109–118 (2015). https://doi.org/10.1515/jas-2015-0012

    Article  CAS  Google Scholar 

  37. B. Bhandari, B. D’ Arcy, C. Kelly, Rheology and crystallization kinetics of honey: present status. Int. J. Food Prop. 2, 217–226 (1999). https://doi.org/10.1080/10942919909524606

    Article  CAS  Google Scholar 

  38. C.C. Da Costa, R.G. Pereira, The influence of propolis on the rheological behaviour of pure honey. Food Chem. 76, 417–421 (2002). https://doi.org/10.1016/S0308-8146(01)00298-9

    Article  Google Scholar 

  39. Z. Ren, X. Bian, L. Lin, Y. Bai, W. Wang, Viscosity and melt fragility in honey-water mixtures. J. Food Eng. 100, 705–710 (2010). https://doi.org/10.1016/j.jfoodeng.2010.06.004

    Article  Google Scholar 

  40. H. Tavakolipour, A.K. Ashtari, Rhelogy of selected Persian honeys. Int. J. Food Eng. 6, 1–12 (2010). https://doi.org/10.2202/1556-3758.1799

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athina Lazaridou.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human participants or animals performed by any of the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sereti, V., Lazaridou, A., Tananaki, C. et al. Development of a Cotton Honey-Based Spread by Controlling Compositional and Processing Parameters. Food Biophysics 16, 365–380 (2021). https://doi.org/10.1007/s11483-021-09677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-021-09677-9

Keywords

Navigation