Abstract
The influences of soy protein isolate hydrolysate (SPIH) obtained during different pressure treatments for 4 h on pasting and short-term retrogradation behaviors of maize starch (MS) were investigated. The results showed solubility of MS markedly increased, whereas swelling power decreased with increased SPIH concentration and pressure. Compared with native MS, the addition of SPIH led to decrease of peak viscosity, final viscosity, setback, and breakdown, whereas pasting temperature was increased. Meanwhile, differential scanning calorimetry (DSC) analysis also showed an increase in gelatinization temperature. In addition, low-field nuclear magnetic resonance (LF-NMR) analysis indicated that the tight association of water and starch molecules was observed with increasing pressures and additions of SPIH. Confocal laser scanning microscopy (CLSM) and atomic force microscope (AFM) images indicated that SPIH obtained at 200 MPa dispersed in the MS gel system to block the formation of hydrogen bonds and inhibit the recrystallization of MS. Fourier transform infrared (FTIR) spectroscopy analysis demonstrated that the addition of SPIH resulted in a decrease in hydrogen bonds within the starch molecules and the result supported above CLSM and AFM measurement results. The results proved that the addition of SPIH could effectively influence pasting characteristics and inhibit the short-term retrogradation of MS, which can be helpful to the application of SPIH in starch-based functional foods.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Y. Takeda, T. Shitaozono, S. Hizukuri, Carbohydr. Res. 199, 207–214 (1990)
Y.Q. Tian, Y. Li, F.A. Manthey, X.M. Xu, Z.Y. Jin, L. Deng, Food Chem. 116, 54–58 (2009)
B.H. Kong, H.L. Niu, F.D. Sun, J.C. Han, Q. Liu, Int. J. Biol. Macromol. 82, 637–644 (2016)
S.J. Wang, C.L. Li, L. Copeland, Q. Niu, S. Wang, Compr. Rev. Food Sci. Food Saf. 14, 568–585 (2015)
B.R. Hamaker, V.K. Griffin, Cereal Chem. 70, 377–380 (1993)
H.V. Dang, C. Loisel, A. Desrumaux, J. Doublier, Food Hydrocoll. 23, 1678–1686 (2009)
Z.K. Zhou, K. Robards, S. Helliwell, C. Blanchard, Food Res. Int. 40, 209–214 (2007)
K. Takahashi, K. Wada, J. Food Sci. 57, 1140–1143 (1992)
W.T. Chen, H.X. Zhou, H. Yang, M. Cui, Food Chem. 167, 180–184 (2015)
C.Y. Lii, M.F. Lai, K.F. Liu, W.H. Chang, Starch-Stärke 49, 346–354 (1997)
Z. Fu, J. Chen, S.J. Luo, C.M. Liu, W. Liu, Starch-Stärke 67, 69–78 (2015)
P.K. Goel, R.S. Singhal, P.R. Kulkarni, Food Chem. 64, 383–389 (1999)
P.D. Ribotta, C.M. Rosell, Starch-Stärke 62, 373–383 (2010)
H.N. Guan, X.Q. Diao, F. Jiang, J.C. Han, B.H. Kong, Food Chem. 245, 89–96 (2018)
M. Zhang, C. Sun, X.R. Wang, N.F. Wang, Y.B. Zhou, Int. J. Biol. Macromol. 15, 1169–1175 (2020)
G.T. Li, F. Zhu, Food Chem. 221, 1560–1568 (2017)
X.Q. Diao, H.N. Guan, X.X. Zhao, Q. Chen, B.H. Kong, Meat Sci. 115, 16–23 (2016)
X.J. Lian, W. Zhu, Y. Wen, L. Li, X.S. Zhao, Int. J. Biol. Macromol. 59, 143–150 (2013)
L.M. Fonseca, J.R. Goncalves, S.L.M.E. Halal, V.Z. Pinto, A.R.G. Dias, A.C. Jacques, E.R. Zavareze, LWT Food Sci. Technol. 60, 714–720 (2015)
L.H. Xie, N. Chen, B.W. Duan, Z.W. Zhu, X.Y. Liao, J. Cereal Sci. 47, 372–379 (2008)
R.F. Tester, W.R. Morrison, Cereal Chem. 67, 551–557 (1990)
M. Cui, L. Fang, H.X. Zhou, H. Yang, Food Chem. 151, 162–167 (2014)
X.N. Li, C.Y. Wang, F. Lu, L.L. Zhang, Q. Yang, Mu. J, X.H. Li, Food Hydrocoll. 44, 353–359 (2015)
L.S. Qian, Y. Yao, C. Li, F.F. Xu, Y. Ying, Z.Q. Shao, J.S. Bao, Food Hydrocoll. 117, 106701 (2021)
P.T.B. Trung, L.B.B. Ngoc, P.N. Hoa, N.N.T. Tien, P.V. Hung, Int. J. Biol. Macromol. 105, 1071–1078 (2017)
X.L. Kong, P. Zhu, Z.Q. Sui, J.S. Bao, Food Chem. 172, 433–440 (2015)
I.S.M. Zaidul, N.A. Nik Norulaini, A.K.Mohd. Omar, H. Yamauchi, T. Noda, Carbohydr. Polym. 69, 784–791 (2007)
F.C. Zhou, Q. Liu, H.W. Zhang, Q. Chen, B.H. Kong, Int. J. Biol. Macromol. 84, 410–417 (2016)
A. Ito, M. Hattori, T. Yoshida, K. Takahashi, Starch-Stärke 56, 570–575 (2004)
S. Renzetti, E.K. Arendt, J. Cereal Sci. 50, 22–28 (2009)
X. Liang, J.M. King, J. Food Sci. 68, 832–838 (2003)
P.D. Ribotta, A. Colombo, C.M. Rosell, Food Hydrocoll. 27, 185–190 (2012)
S. Ragaee, E.M. Abdel-Aal, Food Chem. 95, 9–18 (2006)
J.S. Chen, S.Y. Wang, Z.Y. Deng, X.Y. Zhang, S.L. Feng, H.Q. Yuan, J.C. Tian, J. Food Sci. 77, C546–C550 (2012)
T.Y. Zhou, Q. Zhou, E.P. Li, L.M. Yuan, W.L. Wang, H. Zhang, L.J. Liu, Z.Q. Wang, J.C. Yang, J.F. Gu, Carbohydr. Polym. 239, 116237 (2020)
Y. Li, A.J. Hu, X.Y. Wang, J. Zheng, Int. J. Biol. Macromol. 134, 308–315 (2019)
S. Lockwood, J.M. King, D.R. Labonte, J. Food Sci. 73, 373–377 (2008)
A. Ito, M. Hattori, T. Yoshida, K. Takahashi, Biosci. Biotechnol. Biochem. 70, 76–85 (2006)
Z.Y. Zhang, Y.L. Yang, X.Z. Tang, Y.J. Chen, Y. You, Food Chem. 188, 111–118 (2015)
Y.M. Luo, L.Y. Niu, D.M. Li, J.H. Xiao, Int. J. Biol. Macromol. 144, 967–977 (2020)
Y. Hu, C.X. He, M.Y. Zhang, L.Q. Zhang, H. Xiong, Q. Zhao, Food Hydrocoll. 108, 105840 (2020)
T. Zhang, B. Jiang, M. Miao, W.M. Wu, Y.H. Li, Food Chem. 135, 904–912 (2012)
A.P. Kett, V. Chaurin, S.M. Fitzsimons, E.R. Morris, J.A. O’Mahony, M.A. Fenelon, Food Hydrocoll. 30, 661–671 (2013)
M. Shahbazi, M. Majzoobi, A. Farahnaky, J. Food Eng. 223, 10–21 (2018)
J.R. Huang, Z.H. Chen, Y.L. Xu, H.L. Li, S.X. Liu, D.Q. Yang, H.A. Schols, Carbohydr. Polym. 102, 1001–1007 (2014)
Y.Y. Zhang, K.K. Cui, Q.J. Gao, S. Hussain, Y. Lv, Surf. Coat. Technol. 396, 125966 (2020)
H. Park, S. Xu, K. Seetharaman, Carbohydr. Res. 346, 847–853 (2011)
R. Kizil, J. Irudayaraj, K. Seetharaman, J. Agric. Food Chem. 50, 3912–3918 (2002)
A. Flores-Morales, M. Jiménez-Estrada, R. Mora-Escobedo, Carbohydr. Polym. 87, 61–68 (2012)
A. Gani, B.A. Ashwar, G. Akhter, A. Shah, I.A. Wani, F.A. Masoodi, Int. J. Biol. Macromol. 95, 1101–1107 (2017)
X.L. Shen, J.M. Wu, Y.H. Chen, G.H. Zhao, Food Hydrocoll. 24, 285–290 (2010)
Acknowledgements
This study was funded by Scientific Research Project from Education Department of Liaoning Province (grant no.LJ2020010) and the Doctoral Research Foundation of Bohai University (grant no. 05013/0520bs006).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Guan, H., Diao, X., Han, J. et al. Influence of Soy Protein Isolate Hydrolysates Obtained under High Hydrostatic Pressure on Pasting and Short-Term Retrogradation Behavior of Maize Starch. Food Biophysics 16, 395–405 (2021). https://doi.org/10.1007/s11483-021-09676-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11483-021-09676-w


