Skip to main content

Advertisement

Log in

Influence of Soy Protein Isolate Hydrolysates Obtained under High Hydrostatic Pressure on Pasting and Short-Term Retrogradation Behavior of Maize Starch

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The influences of soy protein isolate hydrolysate (SPIH) obtained during different pressure treatments for 4 h on pasting and short-term retrogradation behaviors of maize starch (MS) were investigated. The results showed solubility of MS markedly increased, whereas swelling power decreased with increased SPIH concentration and pressure. Compared with native MS, the addition of SPIH led to decrease of peak viscosity, final viscosity, setback, and breakdown, whereas pasting temperature was increased. Meanwhile, differential scanning calorimetry (DSC) analysis also showed an increase in gelatinization temperature. In addition, low-field nuclear magnetic resonance (LF-NMR) analysis indicated that the tight association of water and starch molecules was observed with increasing pressures and additions of SPIH. Confocal laser scanning microscopy (CLSM) and atomic force microscope (AFM) images indicated that SPIH obtained at 200 MPa dispersed in the MS gel system to block the formation of hydrogen bonds and inhibit the recrystallization of MS. Fourier transform infrared (FTIR) spectroscopy analysis demonstrated that the addition of SPIH resulted in a decrease in hydrogen bonds within the starch molecules and the result supported above CLSM and AFM measurement results. The results proved that the addition of SPIH could effectively influence pasting characteristics and inhibit the short-term retrogradation of MS, which can be helpful to the application of SPIH in starch-based functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Y. Takeda, T. Shitaozono, S. Hizukuri, Carbohydr. Res. 199, 207–214 (1990)

    Article  CAS  Google Scholar 

  2. Y.Q. Tian, Y. Li, F.A. Manthey, X.M. Xu, Z.Y. Jin, L. Deng, Food Chem. 116, 54–58 (2009)

    Article  CAS  Google Scholar 

  3. B.H. Kong, H.L. Niu, F.D. Sun, J.C. Han, Q. Liu, Int. J. Biol. Macromol. 82, 637–644 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. S.J. Wang, C.L. Li, L. Copeland, Q. Niu, S. Wang, Compr. Rev. Food Sci. Food Saf. 14, 568–585 (2015)

    Article  CAS  Google Scholar 

  5. B.R. Hamaker, V.K. Griffin, Cereal Chem. 70, 377–380 (1993)

    CAS  Google Scholar 

  6. H.V. Dang, C. Loisel, A. Desrumaux, J. Doublier, Food Hydrocoll. 23, 1678–1686 (2009)

    Article  CAS  Google Scholar 

  7. Z.K. Zhou, K. Robards, S. Helliwell, C. Blanchard, Food Res. Int. 40, 209–214 (2007)

    Article  CAS  Google Scholar 

  8. K. Takahashi, K. Wada, J. Food Sci. 57, 1140–1143 (1992)

    Article  CAS  Google Scholar 

  9. W.T. Chen, H.X. Zhou, H. Yang, M. Cui, Food Chem. 167, 180–184 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. C.Y. Lii, M.F. Lai, K.F. Liu, W.H. Chang, Starch-Stärke 49, 346–354 (1997)

    Article  CAS  Google Scholar 

  11. Z. Fu, J. Chen, S.J. Luo, C.M. Liu, W. Liu, Starch-Stärke 67, 69–78 (2015)

    Article  CAS  Google Scholar 

  12. P.K. Goel, R.S. Singhal, P.R. Kulkarni, Food Chem. 64, 383–389 (1999)

    Article  CAS  Google Scholar 

  13. P.D. Ribotta, C.M. Rosell, Starch-Stärke 62, 373–383 (2010)

    Article  CAS  Google Scholar 

  14. H.N. Guan, X.Q. Diao, F. Jiang, J.C. Han, B.H. Kong, Food Chem. 245, 89–96 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. M. Zhang, C. Sun, X.R. Wang, N.F. Wang, Y.B. Zhou, Int. J. Biol. Macromol. 15, 1169–1175 (2020)

    Article  CAS  Google Scholar 

  16. G.T. Li, F. Zhu, Food Chem. 221, 1560–1568 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. X.Q. Diao, H.N. Guan, X.X. Zhao, Q. Chen, B.H. Kong, Meat Sci. 115, 16–23 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. X.J. Lian, W. Zhu, Y. Wen, L. Li, X.S. Zhao, Int. J. Biol. Macromol. 59, 143–150 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. L.M. Fonseca, J.R. Goncalves, S.L.M.E. Halal, V.Z. Pinto, A.R.G. Dias, A.C. Jacques, E.R. Zavareze, LWT Food Sci. Technol. 60, 714–720 (2015)

    Article  CAS  Google Scholar 

  20. L.H. Xie, N. Chen, B.W. Duan, Z.W. Zhu, X.Y. Liao, J. Cereal Sci. 47, 372–379 (2008)

    Article  CAS  Google Scholar 

  21. R.F. Tester, W.R. Morrison, Cereal Chem. 67, 551–557 (1990)

    CAS  Google Scholar 

  22. M. Cui, L. Fang, H.X. Zhou, H. Yang, Food Chem. 151, 162–167 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. X.N. Li, C.Y. Wang, F. Lu, L.L. Zhang, Q. Yang, Mu. J, X.H. Li, Food Hydrocoll. 44, 353–359 (2015)

  24. L.S. Qian, Y. Yao, C. Li, F.F. Xu, Y. Ying, Z.Q. Shao, J.S. Bao, Food Hydrocoll. 117, 106701 (2021)

    Article  CAS  Google Scholar 

  25. P.T.B. Trung, L.B.B. Ngoc, P.N. Hoa, N.N.T. Tien, P.V. Hung, Int. J. Biol. Macromol. 105, 1071–1078 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. X.L. Kong, P. Zhu, Z.Q. Sui, J.S. Bao, Food Chem. 172, 433–440 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. I.S.M. Zaidul, N.A. Nik Norulaini, A.K.Mohd. Omar, H. Yamauchi, T. Noda, Carbohydr. Polym. 69, 784–791 (2007)

  28. F.C. Zhou, Q. Liu, H.W. Zhang, Q. Chen, B.H. Kong, Int. J. Biol. Macromol. 84, 410–417 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. A. Ito, M. Hattori, T. Yoshida, K. Takahashi, Starch-Stärke 56, 570–575 (2004)

    Article  CAS  Google Scholar 

  30. S. Renzetti, E.K. Arendt, J. Cereal Sci. 50, 22–28 (2009)

    Article  CAS  Google Scholar 

  31. X. Liang, J.M. King, J. Food Sci. 68, 832–838 (2003)

    Article  CAS  Google Scholar 

  32. P.D. Ribotta, A. Colombo, C.M. Rosell, Food Hydrocoll. 27, 185–190 (2012)

    Article  CAS  Google Scholar 

  33. S. Ragaee, E.M. Abdel-Aal, Food Chem. 95, 9–18 (2006)

    Article  CAS  Google Scholar 

  34. J.S. Chen, S.Y. Wang, Z.Y. Deng, X.Y. Zhang, S.L. Feng, H.Q. Yuan, J.C. Tian, J. Food Sci. 77, C546–C550 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. T.Y. Zhou, Q. Zhou, E.P. Li, L.M. Yuan, W.L. Wang, H. Zhang, L.J. Liu, Z.Q. Wang, J.C. Yang, J.F. Gu, Carbohydr. Polym. 239, 116237 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. Y. Li, A.J. Hu, X.Y. Wang, J. Zheng, Int. J. Biol. Macromol. 134, 308–315 (2019)

    Article  CAS  PubMed  Google Scholar 

  37. S. Lockwood, J.M. King, D.R. Labonte, J. Food Sci. 73, 373–377 (2008)

    Article  CAS  Google Scholar 

  38. A. Ito, M. Hattori, T. Yoshida, K. Takahashi, Biosci. Biotechnol. Biochem. 70, 76–85 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. Z.Y. Zhang, Y.L. Yang, X.Z. Tang, Y.J. Chen, Y. You, Food Chem. 188, 111–118 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. Y.M. Luo, L.Y. Niu, D.M. Li, J.H. Xiao, Int. J. Biol. Macromol. 144, 967–977 (2020)

    Article  CAS  PubMed  Google Scholar 

  41. Y. Hu, C.X. He, M.Y. Zhang, L.Q. Zhang, H. Xiong, Q. Zhao, Food Hydrocoll. 108, 105840 (2020)

    Article  CAS  Google Scholar 

  42. T. Zhang, B. Jiang, M. Miao, W.M. Wu, Y.H. Li, Food Chem. 135, 904–912 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. A.P. Kett, V. Chaurin, S.M. Fitzsimons, E.R. Morris, J.A. O’Mahony, M.A. Fenelon, Food Hydrocoll. 30, 661–671 (2013)

    Article  CAS  Google Scholar 

  44. M. Shahbazi, M. Majzoobi, A. Farahnaky, J. Food Eng. 223, 10–21 (2018)

    Article  CAS  Google Scholar 

  45. J.R. Huang, Z.H. Chen, Y.L. Xu, H.L. Li, S.X. Liu, D.Q. Yang, H.A. Schols, Carbohydr. Polym. 102, 1001–1007 (2014)

    Article  CAS  PubMed  Google Scholar 

  46. Y.Y. Zhang, K.K. Cui, Q.J. Gao, S. Hussain, Y. Lv, Surf. Coat. Technol. 396, 125966 (2020)

    Article  CAS  Google Scholar 

  47. H. Park, S. Xu, K. Seetharaman, Carbohydr. Res. 346, 847–853 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. R. Kizil, J. Irudayaraj, K. Seetharaman, J. Agric. Food Chem. 50, 3912–3918 (2002)

    Article  CAS  PubMed  Google Scholar 

  49. A. Flores-Morales, M. Jiménez-Estrada, R. Mora-Escobedo, Carbohydr. Polym. 87, 61–68 (2012)

    Article  CAS  PubMed  Google Scholar 

  50. A. Gani, B.A. Ashwar, G. Akhter, A. Shah, I.A. Wani, F.A. Masoodi, Int. J. Biol. Macromol. 95, 1101–1107 (2017)

    Article  CAS  PubMed  Google Scholar 

  51. X.L. Shen, J.M. Wu, Y.H. Chen, G.H. Zhao, Food Hydrocoll. 24, 285–290 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Scientific Research Project from Education Department of Liaoning Province (grant no.LJ2020010) and the Doctoral Research Foundation of Bohai University (grant no. 05013/0520bs006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianchun Han or Dengyong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, H., Diao, X., Han, J. et al. Influence of Soy Protein Isolate Hydrolysates Obtained under High Hydrostatic Pressure on Pasting and Short-Term Retrogradation Behavior of Maize Starch. Food Biophysics 16, 395–405 (2021). https://doi.org/10.1007/s11483-021-09676-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-021-09676-w

Keywords