Abstract
The objective of this study is to investigate the effects of three different organogelators, sorbitan monostearate (SMS), soya lecithin (SL) and glyceryl monostearate (GMS) prepared at different concentrations (12%, 15% and 18%, w/w) on the structural, thermal and mechanical properties of palm olein (PO)-based organogels. Polarized light microscopy analysis revealed needle-like crystals in SMS-PO, rod-shaped tubules in SL-PO and rosette-like aggregates in GMS-PO organogels. Intermolecular hydrogen bonding and van der Waals forces were the main drivers for the self-aggregation of these organogelators in PO, as observed in Fourier transform infrared (FTIR) spectroscopy. X-ray diffraction (XRD) results indicated β’-type polymorphic structure in SL-PO and GMS-PO. As the concentration of organogelators increased, there was a corresponding increase in the firmness, gel-sol transition (Tgs) and melting temperatures of the organogels. SMS-PO with amorphous structure had the lowest firmness, thus produced weaker gel with lower thermal stability. The oil binding capacity (OBC) of both SL-PO and GMS-PO were over 90%, significantly higher than that of SMS-PO organogels. These findings indicate that crystallization is the key determinant factor to the final properties of the organogel networks. This is influenced by the molecular structure and the concentration of the organogelators used.
This is a preview of subscription content,
to check access.





References
F.C. Wang, A.J. Gravelle, A.I. Blake, A.G. Marangoni, Curr. Opin. Food Sci. 7, 27 (2016).
M.A. Rogers, Food Res. Int. 42,747 (2009).
F.R. Lupi, A. Shakeel, V. Greco, N. Baldino, V. Calabrò, D. Gabriele, LWT - Food Sci. Technol. 77, 422 (2017).
J. Paland, J. Dey, Langmuir 27, 3401 (2011).
T. Moschakis, E.Panagiotopoulou, E. Katsanidis, LWT - Food Sci. Technol. 73, 153 (2016).
D.K. Shah, S.S. Sagiri, B. Behera, K. Pal, K. Pramanik, J. Appl. Polym. Sci. 129,793 (2013).
L. Han, L. Li, B. Li, L. Zhao, G.Q. Liu, X. Liu, X. Wang, J. Am. Oil Chem. Soc. 91, 1783 (2014).
V.K. Singh, K. Pramanik, S.S. Ray, K. Pal, AAPS PharmSciTech 16, 293 (2015).
E. Yilmazand, M. Ogutcu, J. Am. Oil Chem. Soc. 91, 1007 (2014).
A.J. Martins, A.A. Vicente, R.L. Cunha, M.A. Cerqueira, Food Funct. 9, 758 (2018).
C. Chung, A. Sher, P. Rousset, E.A. Decker, D.J. McClements, J. Food Eng. 209, 1 (2017).
N. Baran, V.K. Singh, K. Pal, A. Anis, D.K. Pradhan, K. Pramanik, Polym. Plast. Technol. Eng. 53, 865 (2014).
D. Trujillo-Ramírez, C. Lobato-Calleros, E.J. Vernon-Carter, J. Alvarez-Ramirez, Food Res. Int. 119, 829 (2019).
B. Matthäus, Eur. J. Lipid Sci. Technol. 109, 400 (2007).
O.I. Mba, M.-J. Dumont, M. Ngadi, Food Biosci. 10, 26 (2015).
A.S.H. OngandS, H. Goh, Food Nutr. Bull. 23, 11 (2002).
M.E. Norhaizan, S. Hosseini, S. Gangadaran, S.T. Lee, F.R. Kapourchali, M.H. Moghadasian, Lipid Technol. 25, 39 (2013).
S. Pradhan, S.S. Sagiri, V.K. Singh, K. Pal, S.S. Ray, D.K. Pradhan, J. Appl. Polym. Sci. 131 (2014).
B. Behera, S.S. Sagiri, K. Pal, A. Srivastava, J. Appl. Polym. Sci. 127, 4910 (2013).
H. Si, L.Z. Cheong, J. Huang, X. Wang, H. Zhang, J. Am. Oil Chem. Soc. 93, 1075 (2016).
G. Fayaz, S.A.H. Goli, M. Kadivar, J. Am. Oil Chem. Soc. 94, 47 (2017).
P.F.C. Lim, X.Y. Liu, L. Kang, P.C.L. Ho, S.Y. Chan, Int. J. Pharm. 358, 102 (2008).
M. Cui, L. Mao, Y. Lu, F. Yuan, Y. Gao, LWT - Food Sci. Technol. 106, 83 (2019).
M. Suzuki, Y. Nakajima, M. Yumoto, M. Kimura, H. Shirai, K. Hanabusa, Langmuir 19, 8622 (2003).
F.R. Lupi, V. Greco, N. Baldino, B. de Cindio, P. Fischer, D. Gabriele, J. Colloid Interface Sci. 483, 154 (2016).
L.S.K. Dassanayake, D.R. Kodali, S. Ueno, K. Sato, J. Am. Oil Chem. Soc. 86, 1163 (2009).
K. F. Schaink van Malssen, S. Morgado-Alves, D. Kalnin, E. van der Linden, Food Res. Int. 96, 40 (2007).
D. Satapathy, D. Biswas, B. Behera, S.S. Sagiri, K. Pal, K. Pramanik, J. Appl. Polym. Sci. 129, 585 (2013).
L.H. Fasolin, M.A. Cerqueira, L.M. Pastrana, A.A. Vicente, R.L. Cunha, Food Struct. 16, 50 (2018).
M.A. Cerqueira, L.H. Fasolin, C.S.F. Picone, L.M. Pastrana, R.L. Cunha, A.A. Vicente, Food Res. Int. 96, 161 (2017).
D. Battegazzore, S. Bocchini, A. Frache, Express Polym. Lett. 5, 849 (2011).
E.J. Pérez-Monterroza, H.J. Ciro-Velásquez, J.C.A. Tobon, Rev. Fac. Nac. Agron. 69, 7945 (2016).
A.J. Wright, A.G. Marangoni, Edible Oleogels Struct. Heal. Implic. 81 (2011)
E.D. Coand, A.G. Marangoni, J. Am. Oil Chem. Soc. 89, 749 (2012).
M. Ogutcuand, E. Yılmaz, Grasas y Aceites 65, 040 (2014).
S. Pandolsookand, S. Kupongsak, J. Food Eng. 214, 182 (2017).
Acknowledgements
This study was funded by the Fundamental Research Grant Scheme (FRGS/1/2015/WAB01/MUSM/03/1) from the Ministry of Higher Education, Malaysia, and also supported by the School of Science, Monash University Malaysia.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
None.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ghan, S.Y., Siow, L.F., Tan, C.P. et al. Influence of Soya Lecithin, Sorbitan and Glyceryl Monostearate on Physicochemical Properties of Organogels. Food Biophysics 15, 386–395 (2020). https://doi.org/10.1007/s11483-020-09633-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11483-020-09633-z