Skip to main content
Log in

Acid and Moisture Uptake into Red Beets during in Vitro Gastric Digestion as Influenced by Gastric pH

  • Original Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Acid and moisture diffusion into foods during digestion influence food breakdown and nutrient release. As these mass transport processes can be affected by gastric pH and initial food structure, this study investigated acid and moisture uptake into foods with varying initial structure (raw and canned red beets) during in vitro gastric digestion as influenced by gastric pH. Acid uptake was characterized as the ratio between acid concentration during digestion divided by initial acid concentration and observed to be 4.14 ± 0.06 (canned) and 2.68 ± 0.08 (raw) during digestion at pH 1.8 compared to 1.61 ± 0.10 (canned) and 1.02 ± 0.08 (raw) at pH 4.8. Acid effective diffusivities, estimated following Fick’s second law, ranged from 1.7 × 10−10 m2/s to 1.2 × 10−9 m2/s and moisture effective diffusivities ranged from 6.7 × 10−11 m2/s to 2.1 × 10−10 m2/s. Higher solid loss after 240 min of digestion of red beets was observed at pH 1.8 (6.3% of initial solid content (raw) and 4.3% (canned)), whereas no significant solid loss was observed at pH 3.0 and 4.8. Results indicated swelling of cells and decrease in hardness of raw red beets during digestion at pH 1.8. The results of this study may help to design food products with a tailored particle breakdown and nutrient release during the dynamic pH conditions of the gastric environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.W. McDonald, N.G. MacFarlane, Anaesthesia & Intensive Care Medicine 19(3), 128–132 (2018)

    Google Scholar 

  2. G.M. Bornhorst, R.P. Singh, Annu. Rev. Food Sci. Technol. 5, 111–132 (2014)

    CAS  PubMed  Google Scholar 

  3. J. Feher, In Quantitative Human Physiology, Second edn. (Academic Press, Boston, 2017), pp. 785–795

  4. F. Kong, R. Singh, Food Biophys. 6(1), 84–93 (2011)

    PubMed  Google Scholar 

  5. O. Fasina, H. Fleming, R. Thompson, J. Food Sci. 67(1), 181–187 (2002)

    CAS  Google Scholar 

  6. C.A. Gabaldón-Leyva, A. Quintero-Ramos, J. Barnard, R.R. Balandrán-Quintana, R. Talamás-Abbud, J. Jiménez-Castro, J. Food Eng. 81(2), 374–379 (2007)

    Google Scholar 

  7. J.M. Widjaja, Kinetics of Gastric Juice Diffusion to Solid Food during Digestion (University of California, Davis, 2010)

    Google Scholar 

  8. Y.A. Mennah-Govela, G.M. Bornhorst, Food Res. Int. 88, 247–255 (2016)

    CAS  Google Scholar 

  9. Y.A. Mennah-Govela, G.M. Bornhorst, J. Food Eng. 191, 48–57 (2016)

    CAS  Google Scholar 

  10. Y.A. Mennah-Govela, G.M. Bornhorst, R.P. Singh, J. Food Sci. 80(2), E316–E325 (2015)

    CAS  PubMed  Google Scholar 

  11. N.M. Andersen, T. Cognet, P. Santacoloma, et al., J. Food Eng. 192, 61–71 (2017)

    CAS  Google Scholar 

  12. E. Tydeman, M. Parker, M. Wickham, et al., J. Agric. Food Chem. 58(17), 9847–9854 (2010)

    CAS  PubMed  Google Scholar 

  13. A. Van Wey, A. Cookson, N. Roy, et al., Food Res. Int. 57, 34–43 (2014)

    Google Scholar 

  14. G.M. Bornhorst, N. Ströbinger, S.M. Rutherfurd, R. Singh, P.J. Moughan, Food Biophys. 8(1), 12–23 (2012)

    Google Scholar 

  15. M. Koziolek, G. Garbacz, M. Neumann, W. Weitschies, Mol. Pharm. 10(5), 1610–1622 (2013)

    CAS  PubMed  Google Scholar 

  16. A. Daugherty, R. Mrsny, Pharm. Sci. Technolo. Today 2(4), 144–151 (1999)

    CAS  Google Scholar 

  17. A. Dona, G. Pages, R. Gilbert, P. Kuchel, Carbohydr. Polym. 80(3), 599–617 (2010)

    CAS  Google Scholar 

  18. K.D. Bardhan, V. Strugala, P.W. Dettmar, Int. J. Otolaryngol. 2012 (2011)

  19. M. Sanaka, T. Yamamoto, Y. Kuyama, Dig. Dis. Sci. 55(9), 2431–2440 (2010)

    CAS  PubMed  Google Scholar 

  20. G.M. Bornhorst, Annu. Rev. Food Sci. Technol. 8(1) (2017)

  21. G.M. Bornhorst, M.J. Ferrua, R.P. Singh, J. Food Sci. 80(5), R924–R934 (2015)

    CAS  PubMed  Google Scholar 

  22. S. Schwartz, J. Von Elbe, J. Liq. Chromatogr. 5(s1), 43–73 (1982)

    CAS  Google Scholar 

  23. F. Delgado-Vargas, A. Jiménez, O. Paredes-López, Crit. Rev. Food Sci. Nutr. 40(3), 173–289 (2000)

    CAS  PubMed  Google Scholar 

  24. F.C. Stintzing, R. Carle, Trends Food Sci. Technol. 18(10), 514–525 (2007)

    CAS  Google Scholar 

  25. B. Guldiken, G. Toydemir, K. Nur Memis, S. Okur, D. Boyacioglu, E. Capanoglu, Int. J. Mol. Sci. 17(6), 858 (2016)

    PubMed Central  Google Scholar 

  26. E. Puolanne, R. Kivikari, Meat Sci. 56(1), 7–13 (2000)

    CAS  PubMed  Google Scholar 

  27. Y. Mennah-Govela, R.P. Singh, G.M. Bornhorst, Food Funct. 10(9), 6074–6087 (2019)

    CAS  PubMed  Google Scholar 

  28. S.M. Tan, S.M. Lee, G.A. Dykes, Food Res. Int. 66, 417–423 (2014)

    CAS  Google Scholar 

  29. G.M. Bornhorst, R. Singh, Food Biophys. 8(1), 50–59 (2013)

    Google Scholar 

  30. F. Kong, R. Singh, J. Food Sci. 73(5), E202–E210 (2008)

    CAS  PubMed  Google Scholar 

  31. K. Drechsler, M. Ferrua, Food Res. Int. 88, 181–190 (2016)

    CAS  Google Scholar 

  32. J.B. Dressman, R.R. Berardi, L.C. Dermentzoglou, et al., Pharm. Res. 7(7), 756–761 (1990)

    CAS  PubMed  Google Scholar 

  33. M. Minekus, M. Alminger, P. Alvito, et al., Food Funct. 5(6), 1113–1124 (2014)

    CAS  PubMed  Google Scholar 

  34. J. Fletcher, A. Wirz, J. Young, R. Vallance, K.E. McColl, Gastroenterology 121(4), 775–783 (2001)

    CAS  PubMed  Google Scholar 

  35. G.M. Bornhorst, S.M. Rutherfurd, M.J. Roman, B.J. Burri, P.J. Moughan, P.R. Singh, Food Biophys. 9(3), 292–300 (2014)

    Google Scholar 

  36. A.O. Oladejo, H. Ma, W. Qu, et al., Innovative Food Sicence & Emerging Technologies 43, 7–17 (2017)

    CAS  Google Scholar 

  37. J. Srikiatden, J.S. Roberts, J. Food Eng. 74(1), 143–152 (2006)

    Google Scholar 

  38. J. Santacatalina, O. Rodríguez, S. Simal, J. Cárcel, A. Mulet, J.V. García-Pérez, J. Food Eng. 138, 35–44 (2014)

    CAS  Google Scholar 

  39. O.-V. Nistor, L. Seremet, D.G. Andronoiu, L. Rudi, E. Botez, Food Chem. 236, 59–67 (2017)

    CAS  PubMed  Google Scholar 

  40. G. Somaratne, M.M. Reis, M.J. Ferrua, et al. Journal of agricultural food chemistry 67(33), 9399–9410 (2019)

    CAS  PubMed  Google Scholar 

  41. J. Crank, (1975)

  42. M.M. Khin, W. Zhou, S.Y. Yeo, J. Food Eng. 81(3), 514–522 (2007)

    CAS  Google Scholar 

  43. F. Papadopulos, M. Spinelli, S. Valente, et al., Ultrastruct. Pathol. 31(6), 401–407 (2007)

    PubMed  Google Scholar 

  44. F. Kong, R.P. Singh, Food Biophysics 4(3), 180–190 (2009)

    PubMed  PubMed Central  Google Scholar 

  45. K. Ranganathan, V. Subramanian, N. Shanmugam, Crit. Rev. Food Sci. Nutr. 56(16), 2665–2694 (2016)

    PubMed  Google Scholar 

  46. M.E. Dalmau, G.M. Bornhorst, V. Eim, C. Rosselló, S. Simal, Food Chem. 215, 7–16 (2017)

    CAS  PubMed  Google Scholar 

  47. G.M. Bornhorst, L.Q. Chang, S.M. Rutherfurd, P.J. Moughan, R.P. Singh, J. Sci. Food Agric. 93(12), 2900–2908 (2013)

    CAS  PubMed  Google Scholar 

  48. G.M. Bornhorst, M.J. Roman, K.C. Dreschler, R.P. Singh, Food Biophys. 9(1), 39–48 (2014)

    Google Scholar 

  49. M. Marcotte, S. Grabowski, Y. Karimi, P. Nijland, Int. J. Food Eng. 8(4) (2012)

  50. A. R. S. US Department of Agriculture, Nutrient Data Laboratory, (2018)

  51. N. Rastogi, C. Nayak, K. Raghavarao, J. Food Eng. 65(2), 287–292 (2004)

    Google Scholar 

  52. K.C. Drechsler, G.M. Bornhorst, J. Food Eng. 222, 38–48 (2018)

    CAS  Google Scholar 

  53. A.N. Round, N.M. Rigby, A.J. MacDougall, V.J. Morris, Carbohydr. Res. 345(4), 487–497 (2010)

    CAS  PubMed  Google Scholar 

  54. K.W. Waldron, A.C. Smith, A.J. Parr, A. Ng, M.L. Parker, Trends Food Sci. Technol. 8(7), 213–221 (1997)

    CAS  Google Scholar 

  55. A. Ng, A. Harvey, M. Parker, A. Smith, K. Waldron, J. Agric, Food Chem. 46(8), 3365–3370 (1998)

    CAS  Google Scholar 

  56. A.C. Smith, K.W. Waldron, N. Maness, P. Perkins-Veazie, Postharvest Physiology and Pathology of Vegetables 2, 297–329 (2003)

    Google Scholar 

  57. M.E. Latorre, M.F. de Escalada Plá, A.M. Rojas, L.N. Gerschenson, LWT-Food Science and Technology 50(1), 193–203 (2013)

    CAS  Google Scholar 

  58. M.E. Dalmau, P.J. Llabrés, V.S. Eim, C. Rosselló, S. Simal, J. Sci. Food Agric. (2018)

Download references

Acknowledgments

We would like to acknowledge Cindy Cheng for her assistance on the microstructural image analysis and Joseph Chu for his assistance in texture analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail M. Bornhorst.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 73 kb)

ESM 2

(DOCX 2287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mennah-Govela, Y.A., Keppler, S., Januzzi-Guerreiro, F. et al. Acid and Moisture Uptake into Red Beets during in Vitro Gastric Digestion as Influenced by Gastric pH. Food Biophysics 15, 261–272 (2020). https://doi.org/10.1007/s11483-019-09623-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09623-w

Keywords

Navigation