Catalytic Efficiency, Structure, and Recycling Behavior of Electrospun Polyvinyl Alcohol-Xylanase Fibers Cross-Linked by Glutaraldehyde


A versatile and effective method of producing polyvinyl alcohol (PVA)-xylanase (XY) fibers cross-linked by glutaraldehyde vapor (GA) is reported in the present study. Crosslinking was performed for 30, 60, 90, and 180 min. The morphology, structure, and thermal stability of the fibers were investigated by scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), and thermogravimetric analyses (TGA). The enzymatic activity was studied under different storage time and reutilization cycles. The enzyme’s ability to reduce the turbidity of a standard β–glucan solution was also verified. Cross-linked fibers presented denser and more compacted structures. There was an improvement in thermal properties as well as in the recycling and storage efficiency of cross-linked XY–PVA fibers, compared to their non-cross-linked counterparts. Free and 180 min-cross-linked immobilized enzymes were able to reduce the turbidity of the β-glucan solution by a similar degree.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    L.T.A. Souza, L.A.A. Veríssimo, B.C.P. João, M.M. Santoro, R.R. Resende, A.A. Mendes, Biotecnoligia Aplicada à Agroindustria, vol 4 (Blucher, São Paulo, 2017), pp. 529–568

    Google Scholar 

  2. 2.

    D. Mangana, C. Cornaggiaa, A. Liadovaa, A. Dragaa, R. Ivorya, D.E. Evansb, B.V. McClearya, J. Cereal Sci. 84, 90–94 (2018)

    Article  Google Scholar 

  3. 3.

    S. Kumar, I. Haq, J. Prakash, A. Raj, Int. J. Biol. Macromol. 98, 24–33 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    A.A. Homaei, R. Sariri, F. Vianello, R. Stevanato, J. Chem, Biol. 6, 185–205 (2013)

    Google Scholar 

  5. 5.

    R.P. Shaikh, P. Kumar, Y.E. Choonara, L.C. Toit, V. Pillay, Biofabric. 4, 21 (2012)

    Article  Google Scholar 

  6. 6.

    D.M. Fernandes, J.L. Andrade, M.K. Lima, M.F. Silva, L.H.C. Andrade, S.M. Lima, A.A. Winkler Hechenleitner, E.A. Gómez Pineda, Polym. Degrad. Stab. 98, 1862–1868 (2013)

    CAS  Article  Google Scholar 

  7. 7.

    E. Piacentini, M. Yan, L. Giorno, J. Membr. Sci. 524, 79–86 (2017)

    CAS  Article  Google Scholar 

  8. 8.

    J.P. dos Santos, E.R. Zavareze, A.R.G. Dias, N.L. Vanier, Int. J. Biol. Macromol. 118, 843–849 (2018)

    Google Scholar 

  9. 9.

    P. Vashisth, V. Pruthi, Mater. Sci. Eng. 67, 304–312 (2016)

    CAS  Article  Google Scholar 

  10. 10.

    N.T.B. Linh, B.T. Lee, J. Biomater. Appl. 27, 255–266 (2012)

    Article  Google Scholar 

  11. 11.

    M.J. Bailey, P. Biely, K. Poutanen, J. Biotechnol. 23, 257–270 (1992)

    CAS  Article  Google Scholar 

  12. 12.

    L. Wu, X. Yuan, J. Sheng, J. Membr. Sci. 250, 167–173 (2005)

    CAS  Article  Google Scholar 

  13. 13.

    N. Amaly, Y. Si, Y. Chen, A.Y. El-Moghazy, C. Zhao, R. Zhang, G. Sun, Colloids Surf. B. 170, 588–595 (2018)

    CAS  Article  Google Scholar 

  14. 14.

    M. Roberge, R.N. Lewis, F. Shareck, R. Morosoli, D. Kluepfel, C. Dupont, R.N. McElhaney, Proteins: Struct. Funct. Bioinf. 50, 341–354 (2003)

    CAS  Article  Google Scholar 

  15. 15.

    I.E. Moreno-Cortez, J. Romero-García, V. González-González, D.I. García-Gutierrez, M.A. Garza-Navarro, R. Cruz-Silva, Mater. Sci. Eng. C 52, 306–314 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    M.D.A. Porto, J.P. dos Santos, H. Hackbart, G.P. Bruni, L.M. Fonseca, E.R. Zavareze, A.R.G. Dias, Int. J. Biol. Macromol. 126, 834–841 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    C. Tang, C.D. Saquing, P.K. Sarin, R.M. Kelly, S.A. Khan, J. Membr. Sci. 472, 251–260 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    K. Jalaja, N.R. James, Int. J. Biol. Macromol. 73, 270–278 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    P. Jampala, M. Preethi, S. Ramanujam, B.S. Harish, K.B. Uppuluri, V. Anbazhagan, Int. J. Biol. Macromol. 95, 843–849 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    H.U. Rehman, A. Aman, A. Silipo, S.A. Ul Qadar, A. Molinaro, A. Ansari, Food Chem. 139, 1081–1086 (2013)

    Article  Google Scholar 

  21. 21.

    P. Sathishkumara, S. Kamala-Kannana, M. Choa, J.S. Kimb, T. Hadibaratac, M.R. Salimc, B.-T. Oh, J. Mol. Catal. Enzym. 100, 111–120 (2014)

    Article  Google Scholar 

  22. 22.

    B. Bhushan, A. Pal, V. Jain, J. Enzym. Res. 1–9 (2015)

Download references


We would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and Centro de Microscopia Eletrônica do Sul (CEME-SUL) from Universidade Federal do Rio Grande (FURG). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information



Corresponding author

Correspondence to Nathan Levien Vanier.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dos Santos, J.P., Dittgen, C.L., El Halal, S.L.M. et al. Catalytic Efficiency, Structure, and Recycling Behavior of Electrospun Polyvinyl Alcohol-Xylanase Fibers Cross-Linked by Glutaraldehyde. Food Biophysics 15, 155–161 (2020).

Download citation


  • Crosslinking
  • Enzyme activity
  • Turbidity