Skip to main content
Log in

Crystallization Kinetics and Mechanical Properties of Nougat Creme Model Fats

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

A Correction to this article was published on 07 August 2019

This article has been updated

Abstract

Fat crystal networks result from a crystallization process, forming interlinked crystal aggregates of viscoelastic character. Palm oil-based fat crystal networks, such as chocolate and nougat spreads, often show liquid oil separation during storage because the fat crystal network is too weak to retain the liquid oils trapped within its structure. To explore the relationship between crystallization kinetics and subsequent mechanical properties, i) palm oil from three different geographical origins and with diverging crystallization properties, ii) mixtures of Ghanaian palm oil with gradually increasing additions of hazelnut oil, and iii) blends of Ecuadorian palm oil with palm stearin as a tripalmitin (PPP)-rich fraction were investigated. Kinetic parameters were acquired from an extended Avrami model by isothermal differential scanning calorimetry measurements, and the results combined with the elastic properties measured by oscillation rheology since studying crystallization kinetics alone insufficiently informs about the mechanical/structural properties needed to overcome liquid oil separation. Rate constants of all investigated fats followed bell-shaped curves, with curve progression strongly dependent on the lipid composition. Ameliorating crystallization properties entailed enhanced elastic properties. The higher the maximum rate constants, the higher the elastic modulus and the gel rigidity of the respective fats. However, two different linear regions of elastic modulus versus PPP or solid fat content resulted, depending on whether palm oil was diluted with hazelnut oil or blended with a PPP-rich fraction. Hazelnut oil strongly diluted crystallizable portions of the structuring fat, thereby decreasing the mechanical properties in a power-law fashion, because the fat crystal network became less connected between fat crystal aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 07 August 2019

    The original version of this article unfortunately contained errors. During final layout the format of Table 1 was displaced and an odd symbol was inserted in Eq. 2. The correct versions are given below.

References

  1. A.G. Marangoni, L.H. Wesdorp, In Structure and Properties of Fat Crystal Networks, ed. By A.G. Marangoni, L.H. Wesdorp (CRC Press, Boca Raton, 2013) p. 27–99

  2. S. Padar, S.A.K. Jeelani, E. Windhab, J. Am, Oil Chem. Soc. 85(12), 1115–1126 (2008)

    Article  CAS  Google Scholar 

  3. E. Dibildox-Alvarado, J.F. Toro-Vazquez, J. Am, Oil Chem. Soc. 75(1), 73–76 (1998)

    Article  CAS  Google Scholar 

  4. S.S. Narine, K.L. Humphrey, L. Bouzidi, J. Am Oil, Chem. Soc. 83, 913–921 (2006)

    CAS  Google Scholar 

  5. G.M. de Oliveira, A.P.B. Ribeiro, O. dos Santos, L.P. Cardoso, T.G. Kieckbusch, LWT Food Sci. Technol. 63, 1163–1170 (2015)

    Article  CAS  Google Scholar 

  6. M. Avrami, J. Chem. Phys. 8, 212–224 (1940)

    Article  CAS  Google Scholar 

  7. S.S. Hubbes, W. Danzl, P. Foerst, LWT Food Sci. Technol. 93, 189–196 (2018)

    Article  CAS  Google Scholar 

  8. W.H. Shih, W.Y. Shih, S.I. Kim, J. Liu, I.A. Aksay, Phys. Rev. A 42(8), 4772–4779 (1990)

    Article  CAS  Google Scholar 

  9. A.G. Marangoni, N. Acevedo, F. Maleky, E. Co, F. Peyronel, G. Mazzanti, B. Quinn, D. Pink, Soft Matter 8, 1275–1300 (2012)

    Article  CAS  Google Scholar 

  10. T.S. Awad, M.A. Rogers, A.G. Marangoni, J. Phys. Chem. B 108(1), 171–179 (2004)

    Article  CAS  Google Scholar 

  11. M.A. Rogers, D. Tang, L. Ahmadi, A.G. Marangoni, In Food Material Science. Principles and Practice, ed. by J.M. Aguilera, P. Lillford, (Springer, New York, 2008), p. 369–414

  12. D. Tang, A.G. Marangoni, J. Colloid Interface Sci. 318(2), 202–209 (2008)

    Article  CAS  Google Scholar 

  13. R. Vreeker, L.L. Hoekstra, D.C. den Boer, W.G.M. Agterof, Coll. Surfaces 65(2-3), 185–189 (1992)

    Article  CAS  Google Scholar 

  14. S.S. Narine, A.G. Marangoni, Phys. Rev. E 59(2), 1908–1919 (1999)

    Article  CAS  Google Scholar 

  15. A.G. Marangoni, M.A. Rogers, Appl. Phys. Lett. 82(19), 3239–3241 (2003)

    Article  CAS  Google Scholar 

  16. A.G. Marangoni, S.E. McGauley, Cryst. Growth Des. 3(1), 95–108 (2003)

    Article  CAS  Google Scholar 

  17. A.P. Singh, C. Bertoli, P.R. Rousset, A.G. Marangoni, J. Agric. Food Chem 52(6), 1551–1557 (2004)

    Article  CAS  Google Scholar 

  18. D. Pérez-Martínez, C. Alvarez-Salas, J.A. Morales-Rueda, J.F. Toro-Vazquez, M. Charó-Alonso, E. Dibildox-Alvarado, J. Am. Oil Chem. Soc 82(7), 471–479 (2005)

    Article  Google Scholar 

  19. M.A. Stahl, M.H.M. Buscato, R. Grimaldi, L.P. Cardoso, A.P.B. Ribeiro, LWT Food Sci. Technol 54, 3391–3403 (2017)

    CAS  Google Scholar 

  20. M.A. Stahl, M.H.M. Buscato, R. Grimaldi, L.P. Cardoso, A.P.B. Ribeiro, Food Res. Int. 107, 61–72 (2018)

    Article  CAS  Google Scholar 

  21. K.M. Barbosa, L.P. Cardoso, A.P.B. Ribeiro, T.G. Kieckbusch, M.H.M. Buscato, J. Food Sci. Technol 55, 1004–1115 (2018)

    Article  CAS  Google Scholar 

  22. R. Boistelle, in Crystallization and Polymorphism of Fats and Fatty Acids, ed. by N. Garti, K. Sato, (Marcel Dekker, New York, 1989) p. 189–226

  23. T. Mezger, in The Rheology Handbook, ed. by T. Mezger (Vincentz Network, Hannover, 2014), p. 159–176

  24. M.F. Peyronel, A.G. Marangoni, Pulsed Nuclear Magnetic Resonance Spectrometry (AOCS Lipid Library 2018), http://lipidlibrary.aocs.org/Biochemistry/content.cfm?ItemNumber=40797#pulsed. Accessed 3 Dec 2018

  25. S. Braipson-Danthin, V. Gibon, Eur. J. Lipid Sci. Technol. 109(4), 359–372 (2007)

    Article  Google Scholar 

  26. Z. Omar, N.A. Rashid, S.H.M. Fauzi, Z. Shahrim, A.G. Marangoni, LWT Food Sci. Technol. 64, 483–489 (2015)

    Article  CAS  Google Scholar 

  27. E. Yilmaz, M. Öğütcü, J. Am. Oil Chem. Soc 91(6), 1007–1017 (2014)

    Article  CAS  Google Scholar 

  28. K. Mondal, B.S. Murty, J. Non-Crystalline Solids 352(50-51), 5257–5264 (2006)

    Article  CAS  Google Scholar 

  29. R. West, D. Rousseau, Food Res. Int. 85, 224–234 (2016)

    Article  CAS  Google Scholar 

  30. K. Sangwal, K. Sato, in Structure–Function Analysis of Edible Fats, ed. by A.G. Marangoni (AOCS Press, Urbana, 2012) p. 25–78

  31. K.W. Smith, K. Bhaggan, G. Talbot, K.F. van Malssen, J. Am, Oil Chem. Soc. 88(8), 1085–1101 (2011)

    Article  CAS  Google Scholar 

  32. R.W. Hartel, Annu. Rev. Food Sci. Technol. 4(1), 277–292 (2013)

    Article  CAS  Google Scholar 

  33. G. Calliauw, E. Fredrick, V. Gibon, W. De Greyt, J. Wouters, I. Foubert, K. Dewettinck, Food Res. Int. 43(4), 972–981 (2010)

    Article  CAS  Google Scholar 

  34. T. Okawachi, N. Sagi, H. Mori, J. Am. Oil Chem. Soc 62(2), 421–425 (1985)

    Article  CAS  Google Scholar 

  35. J. Vereecken, I. Foubert, K.W. Smith, K. Dewettinck, Eur. J. Lipid Sci. Technol. 111(3), 243–258 (2009)

    Article  CAS  Google Scholar 

  36. D. Tang, A.G. Marangoni, Trends Food Sci. Technol. 18(9), 474–483 (2007)

    Article  CAS  Google Scholar 

  37. A.G. Marangoni, D. Tang, Food Biophys. 3(2), 113–119 (2008)

    Article  Google Scholar 

  38. L. Duffours, T. Woignier, J. Phalippou, J. Non-Crystalline Solids 186, 321–327 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the former company supervisor of Stephen-Sven Hubbes, Steffen Rapp, Head of the Quality Department of Rapunzel Naturkost GmbH, for launching this project. We also want to thank Rapunzel Naturkost GmbH for providing all the resources needed to conduct these studies and Thorsten Tybussek from the Fraunhofer IVV for HPLC analysis of the triglycerides and his scientific support in this project.

Funding

This work was financed by Rapunzel Naturkost GmbH, Legau, Germany, www.rapunzel.de.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Foerst.

Ethics declarations

Conflict of Interest

The research was funded by Rapunzel Naturkost GmbH. Stephen-Sven Hubbes is Head of the Research & Development Department of Rapunzel Naturkost GmbH. André Braun works for Anton Paar Germany GmbH and was employed at the Technical University of Munich (TUM®) during the elaboration of this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubbes, SS., Braun, A. & Foerst, P. Crystallization Kinetics and Mechanical Properties of Nougat Creme Model Fats. Food Biophysics 15, 1–15 (2020). https://doi.org/10.1007/s11483-019-09596-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09596-w

Keywords

Navigation