Advertisement

The Influence of Emulsion Droplet Interactions on the Structural, Material and Functional Properties of a Model Mozzarella Cheese

ORIGINAL ARTICLE

Abstract

We present findings on the influence of interfacial layer composition on the colloidal interactions and associated structural and material properties of oil-in-protein gel emulsions, as applied to a model Mozzarella cheese analogue. Model cheese samples were produced through thermal mixing of pre-prepared oil-in-water emulsions with a renneted casein gel. Sodium caseinate and Tween 20 were used as the emulsifiers. Microstructural analysis showed sodium caseinate stabilised droplets to be homogeneously dispersed within the cheese structure, whilst droplets stabilised by Tween 20 were phase concentrated into localised fat domains within the continuous protein network. Particle size measurements determined that, on chilled storage, the droplets in these localised regions underwent extensive partial coalescence, whilst the homogenously distributed caseinate droplets showed little change in droplet size. Small deformation rheology (4 to 80 °C) determined the sodium caseinate emulsion as providing a reinforcing effect on the protein network across the entire temperature range, while the Tween 20 emulsion was observed to mechanically strengthen the cheese structure at only at temperatures for which the fat phase was solid whilst serving to weaken the structure on transitioning to a molten state. Differences in droplet structure and stability were determined as influencing cheese melt and flow characteristics. During melting, no oiling-off observed for cheese samples comprising sodium caseinate stabilised droplets, compared to Tween 20 stabilised emulsions where extensive oiling-off was observed. Findings corroborate the hypothesis that caseinate coated droplets behave as active fillers within the protein network, whilst the Tween 20 stabilised emulsion are non-interactive.

Keywords

Mozzarella Flow Microstructure Rheology Active/inactive particles 

Abbreviations

AMF

Anhydrous milk fat

CLSM

Confocal laser scanning microscopy

MC_active

Model cheese made from milk fat stabilised with sodium caseinate

MC_inactive

Model cheese made from milk fat stabilised with Tween 20

NaCas

Sodium caseinate

RVA

Rapid visco analyser

Tween 20

Polyoxyethylene-20 sorbitan monolaurate

Notes

Acknowledgements

The authors are grateful to Fonterra Co-operative Group and the Ministry for Primary Industries for funding this project via the Transforming the Dairy Value Chain Primary Growth Partnership.

References

  1. 1.
    M. De Angelis, M. Gobbetti, in Encyclopedia of Dairy Sciences, 2nd edn. (Academic Press, San Diego, 2011), p. 745CrossRefGoogle Scholar
  2. 2.
    X. Ma, M.O. Balaban, L. Zhang, E.A.C. Emanuelsson-Patterson, B. James, J. Food Sci. 79(8), E1528–E1534 (2014)CrossRefGoogle Scholar
  3. 3.
    R. Wadhwani, W.R. McManus, D.J. McMahon, J. Dairy Sci. 94, 1713–1723 (2011)CrossRefGoogle Scholar
  4. 4.
    M.A.E. Auty, M. Twomey, T.P. Guinee, D.M. Mulvihill, J. Dairy Res. 68(3), 417–427 (2001)CrossRefGoogle Scholar
  5. 5.
    D.J. McMahon, R.L. Fife, C.J. Oberg, J. Dairy Sci. 82, 1361–1369 (1999)CrossRefGoogle Scholar
  6. 6.
    X. Ma, B. James, L. Zhang, E.A.C. Emanuelsson-Patterson, J. Food Eng. 115(2), 154–163 (2013)CrossRefGoogle Scholar
  7. 7.
    M.A. Rudan, D.M. Barbano, J. Dairy Sci. 81(8), 2312–2319 (1998)CrossRefGoogle Scholar
  8. 8.
    M.A. Rudan, D.M. Barbano, P.S. Kindstedt, J. Dairy Sci. 81(8), 2077–2088 (1998)CrossRefGoogle Scholar
  9. 9.
    V.S. Poduval, V.V. Mistry, J. Dairy Sci. 82(1), 1–9 (1999)CrossRefGoogle Scholar
  10. 10.
    R.K. Bhaskaracharya, N.P. Shah, Aust. J. Dairy Technol. 56(1), 9–14 (2001)Google Scholar
  11. 11.
    N.R. Rogers, D.J. McMahon, C.R. Daubert, T.K. Berry, E.A. Foegeding, J. Dairy Sci. 93, 4565–4576 (2010)CrossRefGoogle Scholar
  12. 12.
    X. Yang, N.R. Rogers, T.K. Berry, E.A. Foegeding, J. Texture Stud. 42(5), 331–348 (2011)CrossRefGoogle Scholar
  13. 13.
    M.C. Michalski, J.Y. Gassi, M.H. Famelart, et al., Dairy Sci. Technol. 83(2), 131–143 (2003)CrossRefGoogle Scholar
  14. 14.
    M.C. Michalski, R. Cariou, F. Michel, C. Garnier, J. Dairy Sci. 85, 2451–2461 (2002)CrossRefGoogle Scholar
  15. 15.
    A.N. Hassan, S. Awad, J. Dairy Sci. 88, 4214–4220 (2005)CrossRefGoogle Scholar
  16. 16.
    D.W. Everett, M.A.E. Auty, Int. Dairy J. 18(7), 759–773 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Rowney, M.W. Hickey, P. Roupas, D.W. Everett, J. Dairy Sci. 86, 712–718 (2003)CrossRefGoogle Scholar
  18. 18.
    E. Dickinson, Food Hydrocoll. 28(1), 224–241 (2012)CrossRefGoogle Scholar
  19. 19.
    K. Liu, M. Stieger, E. van der Linden, F. van de Velde, Food Hydrocoll. 44, 244–259 (2015)CrossRefGoogle Scholar
  20. 20.
    Y.H. Cho, J.A. Lucey, H. Singh, in Int. Dairy J. 9, 537–545 (1999)CrossRefGoogle Scholar
  21. 21.
    T. van Vliet, C. Polym, Sci. 266(6), 518 (1988)Google Scholar
  22. 22.
    E. Dickinson, J. Chen, J. Dispers. Sci. Technol. 20(1–2), 197 (1999)CrossRefGoogle Scholar
  23. 23.
    K.R. Langley, M.L. Green, J. Texture Stud. 20(2), 191–207 (1989)CrossRefGoogle Scholar
  24. 24.
    Y.L. Xiong, J.E. Kinsella, Milchwissenschaft 46(4), 207–212 (1991)Google Scholar
  25. 25.
    J. Chen, E. Dickinson, Colloids Surf. B 12(373–381) (1999)Google Scholar
  26. 26.
    E. Dickinson, in Modern aspects of emulsion science, ed. by B. P. Binks. (Cambridge, Royal Society of Chemistry, Information Services, UK, 1998), p. 145Google Scholar
  27. 27.
    P. Walstra, J.T.M. Wouters, T.J. Geurts, Dairy Science and Technology (CRC Press, Taylor & Francis Group, Boca Raton, 2006)Google Scholar
  28. 28.
    R. Kapoor, L.E. Metzger, J. Dairy Sci. 88, 3382–3391 (2005)CrossRefGoogle Scholar
  29. 29.
    D. Gurovich, C.W. Macosko, M. Tirrell, Rubber Chem. Technol. 77(1), 1–12 (2004)CrossRefGoogle Scholar
  30. 30.
    G. Naderi, P.G. Lafleur, C. Dubois, Polym. Compos. 29(12), 1301–1309 (2008)CrossRefGoogle Scholar
  31. 31.
    L.E. Metzger, R. Kapoor, L.A. Rosenberg, P. Upreti, Aust. J. Dairy Technol. 57(2), 136 (2002)Google Scholar
  32. 32.
    O. Thionnet, M. Golding, P. Havea, G. Gillies and M. Lad, Food Biophys., 1–12 (2016)Google Scholar
  33. 33.
    M.R. Guo, P.S. Kindstedt, J. Dairy Sci. 78, 2099–2107 (1995)CrossRefGoogle Scholar
  34. 34.
    S.K. Lee, H. Klostermeyer, S.G. Anema, Int. Dairy J. 50, 15–23 (2015)CrossRefGoogle Scholar
  35. 35.
    P. Walstra, The Netherlands milk and dairy journal 19 (2), 93–109 (1965)Google Scholar
  36. 36.
    A. Altan, M. Turhan, S. Gunasekaran, J. Dairy Sci. 88(3), 857–861 (2005)CrossRefGoogle Scholar
  37. 37.
    K. Muthukumarappan, Y.C. Wang, S. Gunasekaran, J. Dairy Sci. 82(6), 1068–1071 (1999)CrossRefGoogle Scholar
  38. 38.
    D.J. McMahon, C.J. Oberg, in Encyclopedia of Dairy Sciences, 2nd edn. (Academic Press, San Diego, 2011), p. 737CrossRefGoogle Scholar
  39. 39.
    J.R. Smith, A.J. Carr, M. Golding, D. Reid, Food Biophys. 13(1), 1–10 (2018)CrossRefGoogle Scholar
  40. 40.
    C. Lopez, V. Briard-Bion, B. Camier, J.Y. Gassi, J. Dairy Sci. 89(8), 2894–2910 (2006)CrossRefGoogle Scholar
  41. 41.
    G.T. Fuller, T. Considine, M. Golding, L. Matia-Merino, A. MacGibbon, G. Gillies, Food Hydrocoll. 43, 521–528 (2015)CrossRefGoogle Scholar
  42. 42.
    G.T. Fuller, T. Considine, M. Golding, L. Matia-Merino, A. MacGibbon, Food Hydrocoll. 51, 23–32 (2015)CrossRefGoogle Scholar
  43. 43.
    L. Oliver, L. Berndsen, G.A. van Aken, E. Scholten, Food Hydrocoll. 50, 74–83 (2015)CrossRefGoogle Scholar
  44. 44.
    G.A. van Aken, L. Oliver, E. Scholten, Food Hydrocoll. 48, 102–109 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Massey Institute of Food Science and TechnologyMassey UniversityPalmerston NorthNew Zealand
  2. 2.Fonterra Research and Development CentrePalmerston NorthNew Zealand
  3. 3.The Riddet Institute, Massey UniversityPalmerston NorthNew Zealand

Personalised recommendations