Skip to main content

Thermodynamic Parameters and Influence of Kinetic Factors on the Self-Assembly of Acid-Soluble Collagen Nanofibrils

Abstract

In this study, the acid-soluble collagen (ASC), extracted from the fish scales of the Caspian white fish (Rutilus Firisikutum) was studied. The thermo-gravimetric analysis (TGA) showed the maximum demineralization accomplished after 48 h of EDTA treatment. SDS-PAGE and FT-IR spectroscopy confirmed that extracted ASC was mainly type I collagen. FE-SEM images confirmed the porous and filamentary structure. The denaturation temperature (Td) of ASC was 19 °C, and the transition heat achieved 9.6 J/g. Collagen self-assembly exhibit important potential because for biomedical applications and green technologies. Various inter- and intra-molecular no-covalent interactions such as hydrogen bonding, hydrophobic, electrostatic and Van der Waals interactions influence the formation of self-assembled collagen. Therefore, critical factors as concentration of ASC, temperature, pH, and ionic strength play crucial role in function integration and structural modulation. The impacts of those external triggers on the kinetic self-assembly of ASC demonstrated a two-phase kinetic process, a sigmoidal plot. ACS showed pronounced self-assembly behavior when temperature and concentration reach above 14 °C and 0.125 mg/ml, higher concentration and/or temperature could stimulate the ASC self-assembly. The optimum pH value for ASC self-assembly was pH = 7. The effect of ionic strength on ASC self-assembly showed the turbidity increases significantly in 131.2 mM salt concentration. The process of self-assembly is mainly driven by thermodynamics. The thermodynamic study of collagen self-assembly illustrated that the activation energy, Ea = 44.3 kJ/mol, the frequency factor, A = 117 × 105 s−1, the enthalpy transition, ΔH = 42.98 kJ/mol, and the entropy transition, ΔS = −0.12 kJ/mol.K, respectively. These findings show that kinetics factors not only influence the self-assembly structure of ASC but also regulate the activation complex structure in the transition state.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. T. Nikolaeva, E. Tiktopulo, R. Polozov, Y.A. Rochev, Biophysics 52(2), 191–195 (2007)

    Article  Google Scholar 

  2. K.E. Kadler, A. Hill, E.G. Canty-Laird, Curr. Opin. Cell Biol. 20(5), 495–501 (2008)

    CAS  Article  Google Scholar 

  3. A.O. Brightman, B. Rajwa, J. Sturgis, M. McCallister, J. Robinson, S. Voytik-Harbin, Biopolymers 54(3), 222–234 (2000)

    CAS  Article  Google Scholar 

  4. Y.-l. Yang, L.J. Kaufman, Biophys. J. 96(4), 1566–1585 (2009)

    CAS  Article  Google Scholar 

  5. G. Forgacs, S.A. Newman, B. Hinner, C.W. Maier, E. Sackmann, Biophys. J. 84(2), 1272–1280 (2003)

    CAS  Article  Google Scholar 

  6. S. Kimura, Y. Ohno, Comp. Biochem. Physiol. B: Comp. Biochem. 88(2), 409–413 (1987)

    Article  Google Scholar 

  7. M. Yan, B. Li, X. Zhao, S. Qin, Food Hydrocoll. 29(1), 199–204 (2012)

    CAS  Article  Google Scholar 

  8. J.J. McManus, P. Charbonneau, E. Zaccarelli, N. Asherie, Curr. Opin. Colloid Interface Sci. 22, 73–79 (2016)

    CAS  Article  Google Scholar 

  9. F. Pati, B. Adhikari, S. Dhara, Bioresour. Technol. 101(10), 3737–3742 (2010)

    CAS  Article  Google Scholar 

  10. T. Ikoma, H. Kobayashi, J. Tanaka, D. Walsh, S. Mann, Int. J. Biol. Macromol. 32(3), 199–204 (2003)

    CAS  Article  Google Scholar 

  11. Y. Nomura, H. Sakai, Y. Ishii, K. Shirai, Biosci. Biotechnol. Biochem. 60(12), 2092–2094 (1996)

    CAS  Article  Google Scholar 

  12. Y. Zhang, W. Liu, G. Li, B. Shi, Y. Miao, X. Wu, Food Chem. 103(3), 906–912 (2007)

    CAS  Article  Google Scholar 

  13. A.V. Persikov, J.A. Ramshaw, A. Kirkpatrick, B. Brodsky, Biochemistry 39(48), 14960–14967 (2000)

    CAS  Article  Google Scholar 

  14. T. Nagai, N. Suzuki, Food Chem. 68(3), 277–281 (2000)

    CAS  Article  Google Scholar 

  15. P. Kittiphattanabawon, S. Benjakul, W. Visessanguan, T. Nagai, M. Tanaka, Food Chem. 89(3), 363–372 (2005)

    CAS  Article  Google Scholar 

  16. U. Laemmli, Nature 227, 680–685 (1970)

    CAS  Article  Google Scholar 

  17. J.L. Brokaw, C.J. Doillon, R.A. Hahn, D.E. Birk, R.A. Berg, F.H. Silver, Int. J. Biol. Macromol. 7(3), 135–140 (1985)

    CAS  Article  Google Scholar 

  18. A. Bigi, A. Ripamonti, G. Cojazzi, G. Pizzuto, N. Roveri, M.H.J. Koch, Int. J. Biol. Macromol. 13, 110–114 (1991)

    CAS  Article  Google Scholar 

  19. F. Zhang, A. Wang, Z. Li, S. He, L. Shao, Food Nutr. Sci. 2(8), 818 (2011)

    CAS  Article  Google Scholar 

  20. T. Nagai, N. Suzuki, T. Nagashima, Food Chem. 111(2), 296–301 (2008)

    CAS  Article  Google Scholar 

  21. K.P. Sai, M. Babu, Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 128(1), 81–90 (2001)

    CAS  Article  Google Scholar 

  22. J.H. Muyonga, C.G.B. Cole, K.G. Duodu, Food Chem. 86(3), 325–332 (2004)

    CAS  Article  Google Scholar 

  23. K. Payne, A. Veis, Biopolymers 27(11), 1749–1760 (1988)

    CAS  Article  Google Scholar 

  24. R. Duan, J. Zhang, X. Du, X. Yao, K. Konno, Food Chem. 112(3), 702–706 (2009)

    CAS  Article  Google Scholar 

  25. G.P. Wu, X.M. Wang, L.P. Lin, S.H. Chen, Q.Q. Wu, Adv. Biosci. Biotechnol. 5, 642–650 (2014)

    CAS  Article  Google Scholar 

  26. T. Ikoma, H. Kobayashi, J. Tanaka, D. Walsh, S. Mann, J. Struct. Biol. 142(3), 327–333 (2003)

    Article  Google Scholar 

  27. A. Cooper, Biochem. J. 118(3), 355–365 (1970)

    CAS  Article  Google Scholar 

  28. H. Eyring, J. Chem. Phys. 3(2), 107–115 (1935)

    CAS  Article  Google Scholar 

  29. P. Noitup, M.T. Morrissey, W. Garnjanagoonchorn, J. Food Biochem. 30(5), 547–555 (2006)

    CAS  Article  Google Scholar 

  30. N. Aukkanit, W. Garnjanagoonchorn, J. Sci. Food Agric. 90(15), 2627–2632 (2010)

    CAS  Article  Google Scholar 

  31. R. Usha, T. Ramasami, Thermochim. Acta 409(2), 201–206 (2004)

    CAS  Article  Google Scholar 

  32. D.L. Christiansen, E.K. Huang, F.H. Silver, Matrix Biol. 19(5), 409–420 (2000)

    CAS  Article  Google Scholar 

  33. P. Singh, S. Benjakul, S. Maqsood, H. Kishimura, Food Chem. 124(1), 97–105 (2011)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Marine Chemistry, Faculty of Marine & Oceanic Sciences, University of Mazandaran, Babolsar, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Elmi.

Ethics declarations

Conflict of Interest

There is no conflict of interests.

Electronic supplementary material

Fig. S1

(DOCX 104 kb)

Fig. S2

(DOCX 18.6 kb)

Fig. S3

(DOCX 22.3 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elmi, F., Elmi, M.M. & Amiri, F.N. Thermodynamic Parameters and Influence of Kinetic Factors on the Self-Assembly of Acid-Soluble Collagen Nanofibrils. Food Biophysics 12, 365–373 (2017). https://doi.org/10.1007/s11483-017-9492-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-017-9492-5

Keywords

  • Collagen
  • Fish Scale
  • Nano Fibril
  • Self- Assembly
  • Kinetics
  • Thermodynamic