Skip to main content
Log in

In Situ Enzymatic Synthesis of Polar Lipid Emulsifiers in the Preparation and Stabilisation of Aerated Food Emulsions

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

We report on the direct incorporation of a lipase derived from Rhizomucor miehei, into aeratable food emulsion formulations, with the objective of enzymatically generating polar lipid fractions during processing, and which are able to demonstrate equivalent functionality to chemically synthesised monoglycerides. Findings showed that the lipolysis of palm oil-in-water emulsions produced a combination of predominantly oleic monoglyceride and palmitic fatty acid fractions. The extent of hydrolysis was able to be controlled through concentration of enzyme, reaction time, and reaction temperature. Hydrolysis was terminated via inactivation of the enzyme through high heat treatment of emulsions. Emulsion properties, notably stability under shear, were seen to be highly dependent on the extent of lipolysis. When applied to model whipping and ice cream formulations, lipolytic generation of polar lipids was shown to promote both partial coalescence and fat globule adsorption to bubble surfaces, generating structures equivalent to those produced by use of commercial emulsifiers. Product properties, such as physical stability and material properties showed variation according to the extent of lipolysis. Our results demonstrated that enzymatic lipolysis of emulsions under controlled conditions could be optimised to deliver requisite droplet functionality for the structuring and stabilisation of aerated food emulsions. Findings are of significance, not only when considering the potential for replacement of chemically derived emulsifiers in such formulations, but also from the perspective that this approach can readily be incorporated into existing manufacturing process operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.A. van Aken, Aeration of emulsions by whipping. Colloids Surf. A Physicochem. Eng. Asp. 190(3), 333–354 (2001). doi:10.1016/s0927-7757(01)00709-9

    Article  Google Scholar 

  2. K.E. Allen, E. Dickinson, B. Murray, Acidified sodium caseinate emulsion foams containing liquid fat: A comparison with whipped cream. LWT Food Sci. Technol. 39(3), 225–234 (2006). doi:10.1016/j.lwt.2005.02.004

    Article  CAS  Google Scholar 

  3. K.E. Allen, B.S. Murray, E. Dickinson, Whipped cream-like textured systems based on acidified caseinate-stabilized oil-in-water emulsions. Int. Dairy J. 18(10–11), 1011–1021 (2008). doi:10.1016/j.idairyj.2008.04.003

    Article  CAS  Google Scholar 

  4. N.M. Barfod, The Influence of Emulsifiers on Heat-Shock Stability of ice Cream (Int Dairy Federation, Brussels, 2004)

    Google Scholar 

  5. H. Besner, H.G. Kessler, Interfacial interaction during the foaming of nonhomogenized cream. Milchwissenschaft-Milk Sci. Int. 53(12), 682–686 (1998)

    CAS  Google Scholar 

  6. E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959)

    Article  CAS  Google Scholar 

  7. S. Bolliger, H.D. Goff, B.W. Tharp, Correlation between colloidal properties of ice cream mix and ice cream. Int. Dairy J. 10(4), 303–309 (2000). doi:10.1016/s0958-6946(00)00044-3

    Article  CAS  Google Scholar 

  8. B.E. Brooker, M. Anderson, A.T. Andrews, The development of structure in whipped Cream. Food Microstruct. 5(2), 277–285 (1986)

    Google Scholar 

  9. E. Dickinson, M. Golding, Rheology of sodium caseinate stabilized oil-in-water emulsions. J. Colloid Interface Sci. 191(1), 166–176 (1997). doi:10.1006/jcis.1997.4939

    Article  CAS  Google Scholar 

  10. E. Fredrick, B. Heyman, K. Moens, S. Fischer, T. Verwijlen, P. Moldenaers, et al., Monoacylglycerols in dairy recombined cream: II. The effect on partial coalescence and whipping properties. Food res. Int. 51(2), 936–945 (2013). doi:10.1016/j.foodres.2013.02.006

    Article  CAS  Google Scholar 

  11. P.B.L. Fregolente, L.V. Fregolente, G.M.F. Pinto, B.C. Batistella, M.R. Wolf-Maciel, R. Maciel, Monoglycerides and diglycerides synthesis in a solvent-free system by lipase-catalyzed glycerolysis. Appl. Biochem. Biotechnol. 146(1–3), 165–172 (2008). doi:10.1007/s12010-008-8133-3

    Article  CAS  Google Scholar 

  12. G.T. Fuller, T. Considine, M. Golding, L. Matia-Merino, A. MacGibbon, Aggregation behavior of partially crystalline oil-in-water emulsions: Part II - effect of solid fat content and interfacial film composition on quiescent and shear stability. Food Hydrocoll. 51, 23–32 (2015a). doi:10.1016/j.foodhyd.2015.03.032

    Article  CAS  Google Scholar 

  13. G.T. Fuller, T. Considine, M. Golding, L. Matia-Merino, A. MacGibbon, G. Gillies, Aggregation behavior of partially crystalline oil-in-water emulsions: Part I - characterization under steady shear. Food Hydrocoll. 43, 521–528 (2015b). doi:10.1016/j.foodhyd.2014.07.032

    Article  CAS  Google Scholar 

  14. H.D. Goff, Emulsion Partial Coalescence and Structure Formation in Dairy Systems (Amer Oil Chemists Soc, Champaign, 2001)

    Google Scholar 

  15. H.D. Goff, Formation and stabilisation of structure in ice-cream and related products. Curr. Opin. Colloid Interface Sci. 7(5–6), 432–437 (2002). doi:10.1016/s1359-0294(02)00076-6

    Article  CAS  Google Scholar 

  16. H.D. Goff, W.K. Jordan, Action of emulsifiers in promoting fat destabilization during the manufacture of ice-Cream. J. Dairy Sci. 72(1), 18–29 (1989)

    Article  CAS  Google Scholar 

  17. M. Golding, E. Pelan, Application of Emulsifiers to Reduce Fat and Enhance Nutritional Quality, in Food Emulsifiers and Their Applications, eds, by G.L. Hasenhuettl, R.W. Hartel (Springer, 2008), p. 328

  18. C. Granger, P. Barey, P. Veschambre, M. Cansell, Physicochemical behavior of oil-in-water emulsions: Influence of milk protein mixtures, glycerol ester mixtures and fat characteristics. Colloids Surf. B-Biointerfaces 42(3–4), 235–243 (2005). doi:10.1016/j.colsurfb.2004.09.006

    Article  CAS  Google Scholar 

  19. M. Harmanescu, Comparative researches on two direct transmethylation without prior extraction methods for fatty acids analysis in vegetal matrix with low fat content. Chem. Cent. J. 6(1), 8 (2012)

    Article  CAS  Google Scholar 

  20. G.L. Hasenhuettl, R.W. Hartel, Food Emulsifiers and Their Applications (Springer, 2008)

  21. N.E. Hotrum, M.A.C. Stuart, T. van Vliet, S.F. Avino, G.A. van Aken, Elucidating the relationship between the spreading coefficient, surface-mediated partial coalescence and the whipping time of artificial cream. Colloids and Surfaces a-Physicochemical and Engineering Aspects 260(1–3), 71–78 (2005). doi:10.1016/j.colsurfa.2005.03.004

    CAS  Google Scholar 

  22. K. Ihara, M. Maruya, Y. Ozaki, Y. Shimada, Y. Asano, K. Iwatsuki, Influences of bubble size and fat globules aggregation on the physical characteristics of whipped cream (studies on factors influencing physical characteristics of whipped cream part II). J. Jpn. Soc. Food Sci. Technol. Nippon Shokuhin Kagaku Kogaku Kaishi 54(4), 173–180 (2007)

    Article  Google Scholar 

  23. W. Jang, A. Nikolov, D.T. Wasan, K. Chen, B. Campbell, Effect of protein on the texture of food emulsions under steady flow. Ind. Eng. Chem. Res. 44(14), 4855–4862 (2005). doi:10.1021/ie049553z

    Article  CAS  Google Scholar 

  24. H.J. Kim, A. Bot, I.C.M. de Vries, M. Golding, E.G. Pelan, Effects of emulsifiers on vegetable-fat based aerated emulsions with interfacial rheological contributions. Food res. Int. 53(1), 342–351 (2013). doi:10.1016/j.foodres.2013.04.027

    Article  CAS  Google Scholar 

  25. I. Kralova, J. Sjoblom, Surfactants used in food industry: A review. J. Dispers. Sci. Technol. 30(9), 1363–1383 (2009). doi:10.1080/01932690902735561

    Article  CAS  Google Scholar 

  26. M.E. Leser, M. Michel, Aerated milk protein emulsions - new microstructural aspects. Curr. Opin. Colloid Interface Sci. 4(3), 239–244 (1999). doi:10.1016/s1359-0294(99)00037-0

    Article  CAS  Google Scholar 

  27. A.R. Mackie, A.P. Gunning, P.J. Wilde, V.J. Morris, Orogenic displacement of protein from the air/water interface by competitive adsorption. J. Colloid Interface Sci. 210(1), 157–166 (1999). doi:10.1006/jcis.1998.5941

    Article  CAS  Google Scholar 

  28. A.R. Mackie, A.P. Gunning, P.J. Wilde, V.J. Morris, Orogenic displacement of protein from the oil/water interface. Langmuir 16(5), 2242–2247 (2000). doi:10.1021/la990711e

    Article  CAS  Google Scholar 

  29. Y.B.C. Man, T. Haryati, H.M. Ghazali, B.A. Asbi, Composition and thermal profile of crude palm oil and its products. J.Am. Oil Chem. Soc. 76(2), 237–242 (1999)

    Article  CAS  Google Scholar 

  30. S. Melis, A. Pauly, L.R. Gerits, B. Pareyt, J.A. Delcour, Lipases as processing aids in the separation of wheat flour into gluten and starch: Impact on the lipid population, gluten agglomeration, and yield. J. Agric. Food Chem. 65(9), 1932–1940 (2017). doi:10.1021/acs.jafc.6b04955

    Article  CAS  Google Scholar 

  31. J. Molkentin, A. Giesemann, Differentiation of organically and conventionally produced milk by stable isotope and fatty acid analysis. Anal. Bioanal. Chem. 388(1), 297–305 (2007). doi:10.1007/s00216-007-1222-2

    Article  CAS  Google Scholar 

  32. M.B. Munk, F.H. Larsen, F.W.J. van den Berg, J.C. Knudsen, M.L. Andersen, Competitive displacement of sodium Caseinate by low-molecular-weight emulsifiers and the effects on emulsion texture and rheology. Langmuir 30(29), 8687–8696 (2014). doi:10.1021/la5011743

    Article  CAS  Google Scholar 

  33. M.R. Muse, R.W. Hartel, Ice cream structural elements that affect melting rate and hardness. J. Dairy Sci. 87(1), 1–10 (2004)

    Article  CAS  Google Scholar 

  34. A. Mustafa, A. Karmali, W. Abdelmoez, Optimisation and economic assessment of lipase-catalysed production of monoesters using Rhizomucor miehei lipase in a solvent-free system. J. Clean. Prod. 137, 953–964 (2016). doi:10.1016/j.jclepro.2016.07.056

    Article  CAS  Google Scholar 

  35. V. Norn, Emulsifiers in Food Techology, 2nd edn. (Wiley-Blackwell, 2015)

  36. C.A. Padiernos, S.Y. Lim, B.G. Swanson, C.F. Ross, S. Clark, High hydrostatic pressure modification of whey protein concentrate for use in low-fat whipping cream improves foaming properties. J. Dairy Sci. 92(7), 3049–3056 (2009). doi:10.3168/jds.2008-1997

    Article  CAS  Google Scholar 

  37. B.M.C. Pelan, K.M. Watts, I.J. Campbell, A. Lips, The stability of aerated milk protein emulsions in the presence of small molecule surfactants. J. Dairy Sci. 80(10), 2631–2638 (1997)

    Article  CAS  Google Scholar 

  38. M. Schaffarczyk, H. Ostdal, P. Koehler, Lipases in wheat Breadmaking: Analysis and functional effects of lipid reaction products. J. Agric. Food Chem. 62(32), 8229–8237 (2014). doi:10.1021/jf5022434

    Article  CAS  Google Scholar 

  39. K.I. Segall, H.D. Goff, A modified ice cream processing routine that promotes fat destabilization in the absence of added emulsifier. Int. Dairy J. 12(12), 1013–1018 (2002). doi:10.1016/s0958-6946(02)00117-6

    Article  CAS  Google Scholar 

  40. D.W. Stanley, H.D. Goff, A.K. Smith, Texture-structure relationships in foamed dairy emulsions. Food res. Int. 29(1), 1–13 (1996). doi:10.1016/0963-9969(95)00063-1

    Article  Google Scholar 

  41. T.R. Weston, J.D. Derner, C.M. Murrieta, D.C. Rule, B.W. Hess, Comparison of catalysts for direct transesterification of fatty acids in freeze-dried forage samples. Crop Sci. 48(4), 1636–1641 (2008). doi:10.2135/cropsci2007.07.0376sc

    Article  CAS  Google Scholar 

  42. H. Wildmoser, J. Scheiwiller, E.J. Windhab, Impact of disperse microstructure on rheology and quality aspects of ice cream. Lebensm. Wiss. Technol.Food Sci. Technol. 37(8), 881–891 (2004). doi:10.1016/j.lwt.2004.04.006

    Article  CAS  Google Scholar 

  43. S. Wongsakul, P. Prasertsan, U.T. Bornscheuer, A. H-Kittikun, Synthesis of 2-monoglycerides by alcoholysis of palm oil and tuna oil using immobilized lipases. Eur. J. Lipid Sci. Technol. 105(2), 68–73 (2003). doi:10.1002/ejlt.200390019

    Article  CAS  Google Scholar 

  44. Q.Z. Zhao, W.M. Kuang, Z. Long, M. Fang, D.L. Liu, B. Yang, M.M. Zhao, Effect of sorbitan monostearate on the physical characteristics and whipping properties of whipped cream. Food Chem. 141(3), 1834–1840 (2013). doi:10.1016/j.foodchem.2013.04.086

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Golding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofian-Seng, NS., Golding, M., Goh, K. et al. In Situ Enzymatic Synthesis of Polar Lipid Emulsifiers in the Preparation and Stabilisation of Aerated Food Emulsions. Food Biophysics 12, 323–338 (2017). https://doi.org/10.1007/s11483-017-9488-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-017-9488-1

Keywords

Navigation