Skip to main content
Log in

The Impact of Water Content and Mixing Time on the Linear and Non-Linear Rheology of Wheat Flour Dough

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The viscoelastic properties of wheat flour dough are known to be very sensitive to small changes in water content and mixing time. In this study the simple scaling law originally proposed by Hibberd (1970) [Rheol. Acta 9, 497-500] to capture the water dependency of the dynamic moduli in small amplitude oscillatory shear, was also applied to creep-recovery shear tests and extensional tests. The scaling law turns out to be valid not only in the linear region, but to a certain extent also in the non-linear region. At sufficiently high water levels, a ‘free’ water phase exists in dough, which attenuates the starch-starch and gluten-starch interactions. Dough characterisation after different mixing times shows that overmixing may cause a disaggregation or even depolymerisation of the gluten network. The network breakdown, as well as the subsequent (partial) recovery, are clearly reflected in the value of the strain-hardening index, for which a maximum is reached at a mixing time close to the optimum as determined with the Mixograph. Finally, the gluten proteins turn out to be much less susceptible to overmixing in an oxygen-lean environment, which demonstrates the significant role of oxygen in the degradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. MacRitchie. in Chemistry and Physics of Baking: Materials, Processes and Products, ed. by J.M.V. Blanshard, P.J. Frazier, T. Galliard (Royal Society of Chemistry, London, 1988)

  2. M. Mastromatteo, M. Guida, A. Danza, J. Laverse, P. Frisullo, V. Lampignano, M.A. Del Nobile, Food Res. Int. 51, 458–466 (2013)

    Article  CAS  Google Scholar 

  3. R. Tkachuk, I. Hlynka, Cereal Chem. 45, 80–87 (1968)

    CAS  Google Scholar 

  4. N.W.R. Daniels. in Water Relations of Foods, ed. by R.B. Duckworth (Academic Press, London, 1975)

  5. F. MacRitchie, Cereal Chem. 53, 318–326 (1976)

    Google Scholar 

  6. R. Upadhyay, D. Ghosal, A. Mehra, J. Food Eng. 109, 104–113 (2012)

    Article  Google Scholar 

  7. S. Ablett, G.E. Attenburrow, P.J. Lillford. in Chemistry and Physics of Baking: Materials, Processes and Products, ed. by J.M.V. Blanshard, P.J. Frazier, T. Galliard (Royal Society of Chemistry, London, 1988)

  8. G.E. Hibberd, W.J. Wallace, Rheol. Acta. 5, 193–198 (1966)

    Article  Google Scholar 

  9. L.L. Navickis, R.A. Anderson, E.B. Bagley, B.K. Jasberg, J. Texture Stud. 13, 249–264 (1982)

    Article  Google Scholar 

  10. P.C. Dreese, J.M. Faubion, R.C. Hoseney, Cereal Chem. 65, 354–359 (1988)

    Google Scholar 

  11. K. Mani, C. Trägårdh, A.-C. Eliasson, L. Lindahl, J. Food Sci. 57, 1198–1209 (1992)

    Article  Google Scholar 

  12. S. Berland, B. Launay, Cereal Chem. 72, 48–52 (1995)

    CAS  Google Scholar 

  13. P. Masi, S. Cavella, M. Sepe, Cereal Chem. 75, 428–432 (1998)

    Article  CAS  Google Scholar 

  14. N. Phan-Thien, M. Safari-Ardi, J. Non-Newton. Fluid. 74, 137–150 (1998)

    Article  CAS  Google Scholar 

  15. M. Jekle, T. Becker, Food Res. Int. 44, 984–991 (2011)

    Article  Google Scholar 

  16. N.A. Hardt, R.M. Boom, A.J. van der Goot, Food Res. Int. 66, 478–484 (2014)

  17. J. Ahmed, J. Food Eng. 152, 85–94 (2015)

    Article  CAS  Google Scholar 

  18. C. Létang, M. Piau, C. Verdier, J. Food Eng. 41, 121–132 (1999)

    Article  Google Scholar 

  19. G.E. Hibberd, Rheol. Acta. 9, 497–500 (1970)

    Article  Google Scholar 

  20. T.S.K. Ng, Linear to Nonlinear Rheology of Bread Dough and its Constituents (Massachusetts Institute of Technology Ph.D. Thesis, Cambridge, 2007)

  21. C.W. Macosko. Rheology: Principles, Measurements and Applications (Wiley-VCH, New York, 1994)

    Google Scholar 

  22. C. Don, W.J. Lichtendonk, J.J. Plijter, T. van Vliet, R.J. Hamer, J. Cereal Sci. 41, 69–83 (2005)

  23. C.C. Tsen, Cereal Chem. 44, 308–317 (1967)

    CAS  Google Scholar 

  24. K. Tanaka, W. Bushuk, Cereal Chem. 50, 605–612 (1973)

    CAS  Google Scholar 

  25. A. Graveland, P. Bosveld, W.J. Lichtendonk, J.H.E. Moonen, Biochem. Biophys. Res. Communications. 93, 1189–1195 (1980)

    Article  CAS  Google Scholar 

  26. A.H. Bloksma, Cereal Foods World. 35, 237–244 (1990)

    Google Scholar 

  27. P.L. Weegels, R.J. Hamer, J.D. Schofield, J. Cereal Sci. 25, 155–163 (1997)

    Article  CAS  Google Scholar 

  28. A.D. Tlapale-Valdivia, J. Chanona-Pérez, R. Mora-Escobedo, R.R. Farrera-Rebollo, G. F. Gutiérrez-López, G. Calderón-Domínguez, Int. J. Food Sci. Tech. 45, 530–539 (2010)

    Article  CAS  Google Scholar 

  29. S.H. Peighambardoust, A.J. van der Goot, T. van Vliet, R.J. Hamer, R.M. Boom, J. Cereal Sci. 43, 183–197 (2006)

  30. S.H. Peighambardoust, M.R. Dadpour, M. Dokouhaki, J. Cereal Sci. 51, 21–27 (2010)

    Article  Google Scholar 

  31. M. Kokawa, K. Fujita, J. Sugiyama, M. Tsuta, M. Shibata, T. Araki, H. Nabetani, J. Cereal Sci. 55, 15–21 (2012)

    Article  CAS  Google Scholar 

  32. F. MacRitchie, J. Polym. Sci. Polym. Symp. 49, 85–90 (1975)

    Article  CAS  Google Scholar 

  33. H. Wieser, Food Microbiol. 24, 115–119 (2007)

    Article  CAS  Google Scholar 

  34. F. MacRitchie, J. Cereal Sci. 46, 96–97 (2007)

    Article  Google Scholar 

  35. P. Belton, J. Cereal Sci. 46, 97–98 (2007)

    Article  Google Scholar 

  36. T. van Vliet, R.J. Hamer, J. Cereal Sci. 46, 98–99 (2007)

  37. V. Kontogiorgos, Food Res. Int. 44, 2582–2586 (2011)

    Article  CAS  Google Scholar 

  38. L. Bohlin, T.L.-G. Carlson, Cereal Chem. 57, 174–177 (1980)

    Google Scholar 

  39. J.I. Amemiya, J.A. Menjivar, J. Food Eng. 16, 91–108 (1992)

    Article  Google Scholar 

  40. H. Larsson, A.-C. Eliasson, E. Johansson, G. Svensson, Cereal Chem. 77, 633–639 (2000)

    Article  CAS  Google Scholar 

  41. Y.-R. Kim, P. Cornillon, O.H. Campanella, R.L. Stroshine, S. Lee, J.-Y. Shim, J. Food Sci. 73, E1-E8 (2008)

  42. B. Schiedt, A. Baumann, B. Conde-Petit, T.A. Vilgis, J. Texture Stud. 44, 317–332 (2013)

  43. M. Meerts, R. Cardinaels, F. Oosterlinck, C.M. Courtin, P. Moldenaers, Food Bioprocess Technol. 10, 249–265 (2017)

  44. AOAC International. Official Methods of Analysis of AOAC International, 16th edn (AOAC International, Washington, DC, 1995)

    Google Scholar 

  45. AACC International. Approved Methods of Analysis, 11th edn (AACC International, St. Paul, 2000)

    Google Scholar 

  46. A.D. McNaught, A. Wilkinson. Compendium of Chemical Terminology, 2nd edn (Blackwell Scientific Publications, Oxford, 1997)

    Google Scholar 

  47. J. Lefebvre, N. Mahmoudi, J. Cereal Sci. 45, 49–58 (2007)

    Article  CAS  Google Scholar 

  48. G.E. Hibberd, Rheol. Acta. 9, 501–505 (1970)

    Article  Google Scholar 

  49. J.R. Smith, T.L. Smith, N.W. Tschoegl, Rheol. Acta. 9, 239–252 (1970)

    Article  Google Scholar 

  50. K.M. Tronsmo, E.M. Magnus, P. Baardseth, J.D. Schofield, A. Aamodt, E.M. Færgestad, Cereal Chem. 80, 587–595 (2003)

    Article  CAS  Google Scholar 

  51. T. van Vliet, J. Cereal Sci. 48, 1–9 (2008)

  52. J.E. Bock, S. Damodaran, Food Hydrocolloids. 31, 146–155 (2013)

    Article  CAS  Google Scholar 

  53. V. Kontogiorgos, P. Shah, P. Bills, Rheol. Acta. 55, 187–195 (2016)

    Article  CAS  Google Scholar 

  54. F. Van Bockstaele, I De Leyn, M. Eeckhout, K. Dewettinck, J. Food Eng. 107, 50–59 (2011)

  55. G.E. Hibberd, N.S. Parker, Rheol. Acta. 14, 151–157 (1975)

    Article  Google Scholar 

  56. R.I. Tanner, F. Qi, S.C. Dai, J. Non-Newton. Fluid. 148, 33–40 (2008)

    Article  CAS  Google Scholar 

  57. V. Kitoko, M. Keentok, R.I. Tanner, Korea-Aust. Rheol. J. 15, 63–73 (2003)

    Google Scholar 

  58. E.B. Bagley, F.R. Dintzis, S. Chakrabarti, Rheol. Acta. 37, 556–565 (1998)

    Article  CAS  Google Scholar 

  59. S. Berland, B. Launay, Rheol. Acta. 34, 622–625 (1995)

    Article  CAS  Google Scholar 

  60. N. Phan-Thien, M. Newberry, R.I. Tanner, J. Non-Newton. Fluid. 92, 67–80 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MM and RC are indebted to the Research Foundation - Flanders (FWO) for a doctoral and postdoctoral fellowship at KU Leuven, respectively. The Research Fund KU Leuven (IDO/12/011) is also gratefully acknowledged for its financial support. Finally, the authors wish to thank Nore Struyf and Mohammad Naser Rezaei for determining the flour characteristics (protein content, moisture content, optimal mixing time and water absorption).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Meerts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meerts, M., Cardinaels, R., Oosterlinck, F. et al. The Impact of Water Content and Mixing Time on the Linear and Non-Linear Rheology of Wheat Flour Dough. Food Biophysics 12, 151–163 (2017). https://doi.org/10.1007/s11483-017-9472-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-017-9472-9

Keywords

Navigation