Skip to main content

Proteomics Analyses and Morphological Structure of Bacillus subtilis Inactivated by Pulsed Magnetic Field

Abstract

Pulsed magnetic field (PMF) technology has emerged as a non-thermal method for inhibition of spoilage microorganism in food. In this study, we evaluate the effect of PMF treatment on the inactivation of Bacillus subtilis. The mechanisms responsible for cell death were also studied using transmission electron microscopy (TEM) and proteome approaches. Results showed that the survival rate of B. subtilis generally decreased with an increase of pulse numbers at the intensity of 3.30 T. The observation of TEM showed damage in cell cytoplasm and cytoplasmic membrane after PMF treatment. Additionally, 18 differentially expressed protein spots were identified by two dimensional gel electrophoresis (2D-GE) and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight (MALDI-TOF/TOF) analysis. The down-regulated outer membrane protein A (OmpA) illustrated that PMF destroyed the cell membrane. Furthermore, Gene ontology (GO) analysis and kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were used to characterize the functions of those proteins. That PMF treatment damaged the membrane component, depressed cellular molecular functions and biological process, and decreased the carbohydrate metabolism and energy metabolism, which explain the death of cells. The presented results give the better view into the proteome of food microorganism and provide insight into the nature of PMF inactivation mechanisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    J. L. Chen, X. J. Zheng, J. Dong, Y. Chen, J. H. Tian, LWT - Food Sci. Technol. 60(2), 1168–1173 (2015)

    CAS  Article  Google Scholar 

  2. 2.

    L. Espina, M. Somolinos, A. A. Ouazzou, S. Condon, D. G. Gonzalo, R. Pagan, Int. J. Food Microbiol. 159(1), 9–16 (2012)

    CAS  Article  Google Scholar 

  3. 3.

    M. X. Gao, H. L. Ma, K. Q. Guo, Trans. Chin Soc. Agr. Eng 21(3), 181–184 (2005)

    CAS  Google Scholar 

  4. 4.

    X. Z. Luo, H. L. Ma, China Dairy Ind. 32(8), 22–23 (2004)

    Google Scholar 

  5. 5.

    M. X. Gao, H. L. Ma, K. Q. Guo, Food Ferment. Ind 30(3), 14–17 (2004)

    Google Scholar 

  6. 6.

    H. L. Ma, Y. L. Deng, J. Y. Chu, Food Sci. 24(4), 52–54 (2003)

    Google Scholar 

  7. 7.

    H. L. Ma, Z. L. Pan, M. X. Gao, Int. J. Food Eng. 4(4), 1–14 (2008)

    Google Scholar 

  8. 8.

    H. L. Wang, H. L. Ma, Z. P. Zhu, Sci. Technol. Food Ind. 29(7), 79–81 (2008)

    CAS  Google Scholar 

  9. 9.

    S. S. Xu, H. L. Ma, Food Sci. 31(21), 20–23 (2010)

    CAS  Google Scholar 

  10. 10.

    L. Franzetti, A. Galli, Ann. Microbiol. Enzymol 49, 137–144 (1999)

    Google Scholar 

  11. 11.

    H. L. Ma, M. X. Gao, K. Q. Guo, Food Sci. 25(8), 42–46 (2004)

    CAS  Google Scholar 

  12. 12.

    J. Y. Qian, H. L. Ma, S. J. Li, F. J. Cui, W. J. Qu, J. Pure, Appl. Microbiol. 7(4), 3043–3050 (2013)

    Google Scholar 

  13. 13.

    M. Hecker, A. Reder, S. Fuchs, M. Pagels, S. Engelmann, Res. Microbiol. 160(4), 245–258 (2009)

    CAS  Article  Google Scholar 

  14. 14.

    G. Cacace, M. F. Mazzeo, A. Sorrentino, V. Spada, A. Malorni, R. A. Siciliano, J. Proteome 73(10), 2021–2030 (2010)

    CAS  Article  Google Scholar 

  15. 15.

    R. Wu, W. Zhang, T. Sun, J. Wu, X. Yue, H. Meng, Int. J. Food Microbiol. 147(3), 181–187 (2011)

    CAS  Article  Google Scholar 

  16. 16.

    L. L. Fu, R. Wang, Y. B. Wang, J. D. Lin, J. Sci, Food Agr 94(13), 2630–2638 (2014)

    CAS  Article  Google Scholar 

  17. 17.

    T. Winter, J. Bernhardt, J. Winter, U. Mader, R. Schluter, K. D. Weltmann, Proteomics 13(17), 2608–2621 (2013)

    CAS  Article  Google Scholar 

  18. 18.

    I. Budde, L. Steil, C. Scharf, U. Völker, E. Bremer, Microbiology-SGM 152, 831–853 (2006)

    CAS  Article  Google Scholar 

  19. 19.

    D. M. Djurdjevic-Milosevic, M. M. Solaja, L. N. Topalic-Trivunovic, M. J. Stijepic, J. R. Glusac, Vet. Med-czech 56(10), 520–527 (2011)

    Google Scholar 

  20. 20.

    M. Eltsov, B. Zuber, J. Struct. Biol. 156, 246–254 (2006)

    CAS  Article  Google Scholar 

  21. 21.

    M. M. Bradford, Anal. Biochem. 72, 248–254 (1976)

    CAS  Article  Google Scholar 

  22. 22.

    A. Shevchenko, M. Wilm, O. Vorm, M. Mann, Anal. Bioanal. Chem. 68, 850–858 (1996)

    CAS  Article  Google Scholar 

  23. 23.

    B. Grunenfelder, G. Rummel, J. Vohradsky, D. Roder, H. Langen, U. Jenal, Proc. Nat. Acad. Sci. USA. 98 (8), 4681–4468 (2001)

  24. 24.

    M. L. Artíguez, M. I. de Marañón, Innov. Food Sci. Emerg. Technol. 28, 52–58 (2015)

    Article  Google Scholar 

  25. 25.

    D. Luciana, A. Luigi, Micron 36(3), 195–217 (2005)

    Article  Google Scholar 

  26. 26.

    J. X. Li, Z. G. Niu, Press. Xian Univ. Electron. Sci. Technolo. 125–130 (1990)

  27. 27.

    J. C. Weaver, Meth. Mol. B 48, 3–28 (1995)

    CAS  Google Scholar 

  28. 28.

    E. W. Lee, C. T. Lou, S. T. Kee, Technol. Cancer Res. Treat 6(4), 287–293 (2007)

    Article  Google Scholar 

  29. 29.

    N. J. Rowan, S. J. MacGregor, J. G. Anderson, R. A. Fouracre, O. Farish, Lett. Appl. Microbiol. 31(2), 110–114 (2000)

    CAS  Article  Google Scholar 

  30. 30.

    M. C. Vernhes, A. Benichou, P. Pernin, P. A. Cabanes, J. Teissie, Water Res. 36(14), 3429–3438 (2002)

    CAS  Article  Google Scholar 

  31. 31.

    T. Oshima, M. Sato, Adv. Biochem. Eng. Biotechnol. 90, 113–133 (2004)

    Google Scholar 

  32. 32.

    W. Wu, X. G. Gao, Y. Dai, Y. Fu, X. M. Li, R. T. Dai, Food Res. Int. 72, 98–105 (2015)

    CAS  Article  Google Scholar 

  33. 33.

    I. C. Sutcliffe, R. B. Russell, J. Bacteriol. 177, 1123–1128 (1995)

    CAS  Google Scholar 

  34. 34.

    V. Eckey, D. Weidlich, H. Landmesser, U. Bergmann, E. Schneider, J. Bacteriol. 192(8), 2150–2159 (2010)

    CAS  Article  Google Scholar 

  35. 35.

    M. Werner, S. Semsey, K. Sneppen, S. Krishna, PLoS One 4 (3), e4923 (2009)

  36. 36.

    E. Sugawara, H. Nikaido, J. Biol. Chem. 267 (4), 2507–2511 (1992)

  37. 37.

    R. J. Almárcegui, C. A. Navarro, A. Paradela, J. P. Albar, D. von Bernath, C. A. Jerez, J. Proteome Res. 13 (2), 946–960 (2014)

  38. 38.

    A. Rivas, M. C. Pina-Pérez, S. Rodriguez-Vargas, M. Zuñiga, A. Martinez, D. Rodrigo, Food Res. Int. 54(1), 1120–1127 (2013)

    CAS  Article  Google Scholar 

  39. 39.

    X. Jiang, T. Zeng, S. Zhang, Y. Zhang, PLoS One 8 (11), e80698 (2013)

  40. 40.

    M. Long, J. Zhao, T. T. Li, C. Tafalla, Q. Q. Zhang, X. H. Wang, J. Proteome 122, 41–54 (2015)

    CAS  Article  Google Scholar 

  41. 41.

    E. F. M. Abreu, F. J. L. Aragao, Ann. Bot. 99(2), 285–292 (2007)

    CAS  Article  Google Scholar 

  42. 42.

    K. T. Yoshida, T. Wada, H. Koyama, R. Mizobuchi-Fukuoka, S. Naito, Plant Physiol. 119(1), 65–72 (1999)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Authors wish to extend their appreciation to the National Natural Science Foundation of China (No.31271966), National Key Research and Development Program (No. 2016YFD0400700-05), Natural Science Foundation of Jiangsu Province (No. BK20150498), The social development project of Jiangsu Science and Technology Department (No. BE2016740834) for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Haile Ma.

Additional information

Jingya Qian, Cunshan Zhou are joint first author.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Zhou, C., Ma, H. et al. Proteomics Analyses and Morphological Structure of Bacillus subtilis Inactivated by Pulsed Magnetic Field. Food Biophysics 11, 436–445 (2016). https://doi.org/10.1007/s11483-016-9444-5

Download citation

Keywords

  • Bacillus subtilis
  • Pulsed magnetic field
  • Proteomics analyses
  • Cell morphology