Skip to main content

Biological Effect and Inactivation Mechanism of Bacillus subtilis Exposed to Pulsed Magnetic Field: Morphology, Membrane Permeability and Intracellular Contents


Biological effect and inactivation mechanism of Bacillus subtilis exposed to pulsed magnetic field (PMF) were investigated. Cell morphology, membrane permeability, release of intracellular proteins and damage of deoxyribonucleic acid (DNA) were monitored. The inactivation effect of PMF treatment on B. subtilis was enhanced with the increase in intensity and pulse number. Scanning electron microscopy (SEM) analysis showed that the PMF treated bacterial cells had rough surfaces and damaged cellular membranes. Flow cytometry measurements showed that the cell membrane permeability increased after the PMF treatment. Leakage of intracellular contents, measured as OD, significantly increased with the increase in PMF intensity and pulsed number. A maximum leakage of cytoplasmic contents was detected at intensity of 3.30 T and 30 pulses. Enterobacterial repetitive intergenic consensus - polymerase chain reaction (ERIC-PCR) fingerprint signaled that the DNA was fragmented after the PMF treatment at the intensity of 3.0 T with 30 pulses and 3.3 T with 10, 20 and 30 pulses. These findings may give clues to the mechanism of bacterial cell death due to the PMF treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    N. Yang, K. Huang, C. Lyu, J. Wang, Food Control 61, 28–38 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    M. X. Gao, H. L. Ma, K. Q. Guo, Food Ferment. Ind. 30(3), 14–17 (2004)

    Google Scholar 

  3. 3.

    L. Monti, M. S. Pernecco, R. Moruzzi, P. Battini, B. Zaniol, B. Barbiroli, J. Bioelectricity. 10(1–2), 119–130 (1991)

    CAS  Article  Google Scholar 

  4. 4.

    M. R. Scarfi, M. B. Lioi, M. Della Noce, O. Zeni, C. Franceschi, D. Monti, G. Castellani, F. Bersani, Bioelectrochem. Bioenerg. 43(1), 77–81 (1997)

    CAS  Article  Google Scholar 

  5. 5.

    J. Schimmelpfeng, H. Dertinger, Bioelectrochem. Bioenerg. 30, 143–150 (1993)

    CAS  Article  Google Scholar 

  6. 6.

    I. Hönes, A. Pospichil, H. Berg, Bioelectrochem. Bioenerg. 44(2), 275–277 (1998)

    Article  Google Scholar 

  7. 7.

    M. S. Davies, Bioelectromagnetics 17(2), 154–161 (1996)

    CAS  Article  Google Scholar 

  8. 8.

    T. D. Xie, Y. D. Chen, P. Marszalek, T. Y. Tsong, Biophys. J. 72(6), 2496–2502 (1997)

    CAS  Article  Google Scholar 

  9. 9.

    J. Galvanoskis, J. Sandblom, Bioelectrochem. Bioenerg. 46(2), 161–174 (1998)

    Article  Google Scholar 

  10. 10.

    J. L. Phillips, W. Haggren, W. J. Thomas, T. Ishida-Jones, W. R. Adey, Biochim. Biophys. Acta 1132(2), 140–144 (1992)

    CAS  Article  Google Scholar 

  11. 11.

    K. Chang, W. H. S. Chang, M. L. Wu, C. Shih, Bioelectromagnetics 24(6), 431–439 (2003)

    Article  Google Scholar 

  12. 12.

    K. Chang, W. H. Chang, S. Huang, S. Huang, C. Shih, J. Orthop, Res. 23(6), 1308–1314 (2005)

    CAS  Google Scholar 

  13. 13.

    Z. Schwartz, M. Fisher, C. H. Lohmann, B. J. Simon, B. D. Boyan, Ann. Biomed. Eng. 37(3), 437–444 (2009)

    Article  Google Scholar 

  14. 14.

    M. P. Greenbaum, Biochem. Biophys. Res. Commun. 18(1), 40–44 (1994)

    Article  Google Scholar 

  15. 15.

    R. S. Mittenzwey, W. Mei, Bioelectrochem. Bioenerg. 40(1), 21–27 (1996)

    CAS  Article  Google Scholar 

  16. 16.

    H. Berg, Bioelectrochem. Bioenerg. 48(2), 355–360 (1999)

    CAS  Article  Google Scholar 

  17. 17.

    L. Strašák, V. Vetterl, J. S. Marda, Bioelectrochemistry 55, 161–164 (2002)

    Article  Google Scholar 

  18. 18.

    S. Ueno, M. Iwasaka, J. Appl, Phys. 79(8), 4705–4707 (1996)

    CAS  Google Scholar 

  19. 19.

    I. Y. Belyaev, Y. D. Alipov, M. Harms-Ringdahl, Biochim. Biophys. Acta 1336(3), 465–473 (1997)

    CAS  Article  Google Scholar 

  20. 20.

    W. J. Ji, H. M. Huang, A. H. Deng, C. Y. Pan, Micron, 40 (8), 894–898 (2009)

    Article  Google Scholar 

  21. 21.

    H. L. Wang, H. L. Ma, Z. P. Zhu, Sci. Technol. Food Ind. 29 (7), 79–81 (2008)

  22. 22.

    H. L. Ma, Z. L. Pan, M. X. Gao, Efficacy in microbial sterilization of pulsed magnetic field treatment. Int. J. Food Eng. 4(4), 1–14 (2008)

    Google Scholar 

  23. 23.

    S. S. Xu, H. L. Ma, Food Sci. 31(21), 20–23 (2010)

    CAS  Google Scholar 

  24. 24.

    D. Garcia, N. Gomez, P. Manas, S. Condon, J. Raso, R. Pagan, J. Appl. Microbiol 99(1), 94–104 (2005)

    CAS  Article  Google Scholar 

  25. 25.

    J. Korolczuk, J. R. McKeag, J. Carballeira Fernandez, F. Baron, N. Grosset, R. Jeantet, J. Food Eng. 75(1), 11–20 (2006)

    Article  Google Scholar 

  26. 26.

    K. Hovnanyan, M. Seda, P. Astghik, N. Liparit, T. Armen, OALib J. 2, e1492 (2015)

    Google Scholar 

  27. 27.

    A. Mathys, B. Chapman, M. Bull, V. Heinz, D. Knorr, Innov. Food Sci. Emerg. Technol. 8(4), 519–527 (2007)

    Article  Google Scholar 

  28. 28.

    J. Li, A. Y. Wang, F. M. Zhu, R. Xu, X. S. Hu, Indian J. Microbiol. 53(3), 352–358 (2013)

    CAS  Article  Google Scholar 

  29. 29.

    J. Versalovic, T. Koeuth, J. R. Lupski, Nucl. Acid. Res. 19(24), 6823–6831 (1991)

    CAS  Article  Google Scholar 

  30. 30.

    M. Li, J. H. Qu, Y. Z. Peng, J. Environ, Sci. 16(2), 348–352 (2004)

    CAS  Google Scholar 

  31. 31.

    H. Li, L. Deng, Y. Chen, X. J. Liao, Innov. Food Sci. Emerg. Technol. 14, 99–106 (2012)

    CAS  Article  Google Scholar 

  32. 32.

    I. Sondi, B. Salopek-Sondi, J. Colloid Interface Sci. 275(1), 177–182 (2004)

    CAS  Article  Google Scholar 

  33. 33.

    M. A. Esmekaya, S. I. Acar, F. Kiran, A. G. Canseven, O. Osmanagaoglu, N. Seyhan, Appl. Biochem. Biotechnol. 169(8), 2341–2349 (2013)

    CAS  Article  Google Scholar 

  34. 34.

    V. Bansal, A. Sharma, C. Ghanshyam, M. L. Singla, K. Kim, Food Bioprod Process. 95, 146–154 (2015)

    CAS  Article  Google Scholar 

  35. 35.

    F. Pillet, C. Formosa-Dague, H. Baaziz, E. Dague, M. P. Rols, Sci Rep-UK. 6, 19778 (2016)

    CAS  Article  Google Scholar 

  36. 36.

    D. C. Kemp, K. L. R. Brouwer, Toxicol. Vitro. 18(6), 869–877 (2004)

    CAS  Article  Google Scholar 

  37. 37.

    Z. Zhang, B. Jiang, X. J. Liao, J. Y. Yi, X. S. Hu, Y. Zhang, Int. J. Food Microbiol. 160(2), 99–104 (2012)

    CAS  Article  Google Scholar 

  38. 38.

    J. Wan, J. Coventry, P. Swiergon, P. Sanguansri, C. Versteeg, Food Sci. Technol. 20, 414–424 (2009)

    CAS  Article  Google Scholar 

  39. 39.

    I. Bajpai, N. Saha, B. Basu, J. Biomed, Mater. Res. Part B. 100(5), 1206–1217 (2012)

    Article  Google Scholar 

  40. 40.

    S. Y. Cao, M. S. Wang, A. C. Cheng, X. F. Qi, X. Y. Yang, S. X. Deng, N. C. Yin, Z. H. Zhang, D. C. Zhou, D. K. Zhu, Q. H. Luo, X. Y. Chen, World J. Gastroenterol. 14(7), 1120–1125 (2008)

    CAS  Article  Google Scholar 

  41. 41.

    H. Lai, N. P. Singh, Bioelectromagnetics 18(2), 156–165 (1997)

    CAS  Article  Google Scholar 

Download references


The authors wish to thank the National Natural Science Foundation of China (No. 31271966), National Key Research and Development Program (No. 2016YFD0400700-05), Natural Science Foundation of Jiangsu Province (No. BK20150498), The social development project of Jiangsu Science and Technology Department (No. BE2016740834) and Research and Innovation Project for Postgraduate of Higher Education Institutions of Jiangsu Province (No. CX10B-021X) for their valuable support.

Author information



Corresponding author

Correspondence to Haile Ma.

Additional information

Jingya Qian and Cunshan Zhou are joint first author

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Zhou, C., Ma, H. et al. Biological Effect and Inactivation Mechanism of Bacillus subtilis Exposed to Pulsed Magnetic Field: Morphology, Membrane Permeability and Intracellular Contents. Food Biophysics 11, 429–435 (2016).

Download citation


  • Bacillus subtilis
  • Pulsed magnetic field
  • Cell morphology
  • Cell membrane permeability