Food Biophysics

, Volume 11, Issue 3, pp 235–247 | Cite as

Influence of Particle Size and Concentration on Rheological Behaviour of Reconstituted Apple Purees

  • Cassandre Leverrier
  • Giana Almeida
  • Lucia Espinosa-Mu noz
  • Gérard CuvelierEmail author


This work investigates the impact of structural parameters on the rheological behaviour of apple purees. Reconstructed apple purees from 0 g/100 g up to 2.32 g/100 g of insoluble solids content and varying in particle size were prepared. Three different particle size distributions were obtained by mechanical treatment only, to modify both size and morphology of the particles without modifying the intrinsic rigidity of the cell walls. Rheological measurements showed that the insoluble solids content have a first order effect on the rheological behaviour of the suspensions: three concentrations domains were observed in both dynamic and flow measurements. A model is proposed for each domain. The existence of a weak network between particles is clearly shown over a critical concentration of insoluble solids (cell walls) depending on particle size distribution (semi-diluted domain). In a concentrated domain, particles are on close packing conditions and their apparent volume begin to shrink. Particle size and shape also play an important role on the rheological behaviour of reconstructed apple puree. Due to their irregular shape, cell clusters clog the medium at lower concentration compared to individual cells.


Fruit Vegetable Suspension Rheology Soft matter Insoluble solids 



The research leading to these results has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement number 311754. We would also like to thank Gabrielle Moulin for her technical support.


  1. 1.
    WHO Regional Office for Europe, Comparative analysis of nutrition policies in the WHO European Region, 101 (2006)Google Scholar
  2. 2.
    A. S. Szczesniak, E.L. Kahn, Consumer awareness of and attitudes to food texture. J. Texture Stud. 2, 280 (1971)CrossRefGoogle Scholar
  3. 3.
    P. Lopez-Sanchez, J. Nijsse, H.C.G. Blonk, L. Bialek, S. Schumm, M. Langton, Effect of mechanical and thermal treatments on the microstructure and rheological properties of carrot, broccoli and tomato dispersions. J. Sci. Food Agric. 91, 207–217 (2011)CrossRefGoogle Scholar
  4. 4.
    A.A. Khan, J.F.V. Vincent, Anisotropy in the fracture properties of apple flesh as investigated by crack-opening tests. J. Mater. Sci. 8, 4551 (1993)Google Scholar
  5. 5.
    M.A. Rao, H.J. Cooley, J.N. Nogueira, M.R. McLellan, Rheology of apple sauce : effect of apple cultivar, firmness, and processing parameters. J. Food Sci. 51, 176–179 (1986)CrossRefGoogle Scholar
  6. 6.
    K.R. Moelants, R. Cardinaels, S. Van Buggenhout, A.M. Van Loey, P. Moldenaers, M.E. Hendrickx, A review on the relationships between processing, food structure and rheological properties of planttissue-based food suspensions. J. Food Sci. 13, 241–260 (2014)Google Scholar
  7. 7.
    L. Espinosa-Muñoz, R. Symoneaux, C.M.G.C. Renard, N. Biau, G. Cuvelier, The significance of structural properties for the development of innovative apple puree textures. LWT Food Sci. Technol. 49, 221–228 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Inarejos-García, V. Mancebo-Campos, P. Cañizares, J. Llanos, Physical-chemical characterization of fruit purees and relationship with sensory analysis carried out by infants (12 to 24 mo). J. Food Sci. 80, E1005E1011 (2015)CrossRefGoogle Scholar
  9. 9.
    L. Espinosa-Muñoz, C. Renard, R. Symoneaux, N. Biau, G. Cuvelier, Structural parameters that determine the rheological properties of apple puree. J. Food Eng. 119, 619–626 (2013)CrossRefGoogle Scholar
  10. 10.
    I.A. Appelqvist, M. Cochet-Broch, A.A. Poelman, L. Day, Morphologies, volume fraction and viscosity of cell wall particle dispersions particle related to sensory perception. Food Hydrocoll. 44, 198–207 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Hemar, S. Lebreton, M. Xu, L. Day, Small-deformation rheology investigation of rehydrated cell wall particlesxanthan mixtures. Food Hydrocoll. 25, 668–676 (2011)CrossRefGoogle Scholar
  12. 12.
    P. Lopez-Sanchez, V. Chapara, S. Schumm, R. Farr, Shear elastic deformation and particle packing in plant cell dispersions. Food Biophys. 7, 1–14 (2012)CrossRefGoogle Scholar
  13. 13.
    L. Day, M. Xu, S.K. Øiseth, L. Lundin, Y. Hemar, Dynamic rheological properties of plant cell-wall particle dispersions. Colloids Surf. B: Biointerfaces. 81, 461–467 (2010)CrossRefGoogle Scholar
  14. 14.
    L. Day, M. Xu, S.K. Øiseth, Y. Hemar, L. Lundin, Control of morphological and rheological properties of carrot cell wall particle dispersions through processing. Food Bioprocess Technology. 3, 928–934 (2010)CrossRefGoogle Scholar
  15. 15.
    K.R.N. Moelants, R. Cardinaels, R. P. Jolie, T.A.J. Verrijssen, S. Van Buggenhout, L.M. Zumalacarregui, A.M. Van Loey, P. Moldenaers, M.E. Hendrickx, Relation between particle properties and rheological characteristics of carrot-derived suspensions. Food Bioprocess Technology. 6, 1127–1143 (2013)CrossRefGoogle Scholar
  16. 16.
    P. Steeneken, Rheological properties of aqueous suspensions of swollen starch granules. Carbohydr. Polym. 11, 23–42 (1989)CrossRefGoogle Scholar
  17. 17.
    E. Bayod. Microstructural and Rheological Properties of Concentrated Tomato Suspensions during Processing (Lund University, Ph.D. thesis, 2008)Google Scholar
  18. 18.
    E. SCHIJVENS, T. Van Vliet, C. Van DIJK, Effect of processing conditions on the composition and rheological properties of applesauce. J. Texture Stud. 29, 123–143 (1998)CrossRefGoogle Scholar
  19. 19.
    C.-G. Qiu, M. Rao, Role of pulp content and particle Size in yield stress of apple Sauce. J. Food Sci. 53, 1165–1170 (1988)CrossRefGoogle Scholar
  20. 20.
    P. Lopez-Sanchez, R. Farr, Power laws in the elasticity and yielding of plant particle suspensions. Food Biophysics. 7, 15–27 (2011)CrossRefGoogle Scholar
  21. 21.
    K.W. Waldron, M.L. Parker, A.C. Smith, Plant cell walls and food quality, Comprehensive reviews in food science and food safety. 2, 128–146 (2003)Google Scholar
  22. 22.
    D.N. Sila, T. Duvetter, A. De Roeck, I. Verlent, C. Smout, G.K. Moates, B.P. Hills, K.K. Waldron, M. Hendrickx, A. Van Loey, Texture changes of processed fruits and vegetables: potential use of highpressure processing. Trends Food Sci. Technol. 19, 309–319 (2008)CrossRefGoogle Scholar
  23. 23.
    S. Müller, H. Kunzek, Material properties of processed fruit and vegetables I. Effect of extraction and thermal treatment on apple parenchyma. Zeitschrift für Lebensmitteluntersuchung und -Forschung A. 206, 264–272 (1998)CrossRefGoogle Scholar
  24. 24.
    H. Kunzek, H. Opel, B. Senge, Rheological examination of material with cellular structure. Zeitschrift für Lebensmitteluntersuchung und -Forschung A. 205, 193–203 (1997)CrossRefGoogle Scholar
  25. 25.
    S. Vetter, H. Kunzek, The influence of suspension solution conditions on the rehydration of apple cell wall material. Eur. Food Res. Technol., 39–45 (2003)Google Scholar
  26. 26.
    L. Espinosa. Texture de la purée de pomme : influence de la structure sur les propriétés rhéologiques et la perception Sensorielle - Effet du traitement mécanique (Ph.D. thesis, AgroParisTech - Ingénierie Procédés aliments, 2012)Google Scholar
  27. 27.
    C. Renard, Variability in cell wall preparations: quantification and comparison of common methods. Carbohydr. Polym. 60, 515–522 (2005)CrossRefGoogle Scholar
  28. 28.
    L. Espinosa, N. To, R. Symoneaux, C.M. Renard, N. Biau, G. Cuvelier, Effect of processing on rheological, structural and sensory properties of apple puree. Procedia Food Sci. 1, 513–520 (2011)CrossRefGoogle Scholar
  29. 29.
    J.T. Woolley, Refractive index of soybean leaf cell walls. Plant Physiol. 55, 172–174 (1975)CrossRefGoogle Scholar
  30. 30.
    K.R.N. Moelants, R. Cardinaels, R.P. Jolie, T.A.J. Verrijssen, S. Van Buggenhout, A.M. Van Loey, P. Moldenaers, M.E. Hendrickx, Rheology of concentrated tomato-derived suspensions: effects of particle characteristics. Food Bioprocess Technol. 7, 248–264 (2014)CrossRefGoogle Scholar
  31. 31.
    J.F. Steffe. Rheological methods in food process engineering, 2nd edn (Freeman Press, 1996)Google Scholar
  32. 32.
    C. Gallegos, J.M. Franco, P. Partal, Rheology of food dispersions. Rheology Rev, 19–65 (2004)Google Scholar
  33. 33.
    C. Servais, R. Jones, I. Roberts, The influence of particle size distribution on the processing of food. J. Food Eng. 51, 201–208 (2002)CrossRefGoogle Scholar
  34. 34.
    R.J. Farris, Prediction of the viscosity of multimodal suspensions from unimodal viscosity data. J. Rheol. 12, 281 (1968)CrossRefGoogle Scholar
  35. 35.
    N. Nakajima, E.R. Harrell, Rheology of PVC plastisol: particle size distribution and viscoelastic properties. J. Colloid Interface Sci. 238, 105–115 (2001)CrossRefGoogle Scholar
  36. 36.
    S. Adams, W.J. Frith, J.R. Stokes, Influence of particle modulus on the rheological properties of agar microgel suspensions. J. Rheol. 48, 1195 (2004)CrossRefGoogle Scholar
  37. 37.
    A. Einstein, Eine neue Bestimmung der Molekul-dimensionen. Ann. d. Phys. 19, 289–306 (1906)CrossRefGoogle Scholar
  38. 38.
    H. Khelifi, A. Perrot, T. Lecompte, D. Rangeard, G. Ausias, Prediction of extrusion load and liquid phase filtration during ram extrusion of high solid volume fraction pastes. Powder Technol. 249, 258–268 (2013)CrossRefGoogle Scholar
  39. 39.
    H.A. Barnes, A handbook of elementary rheology (2000)Google Scholar
  40. 40.
    G.I. Taylor, The viscosity of a fluid containing small drops of another fluid, proceedings of the royal society a: mathematical. Phys. Eng. Sci. 138, 41–48 (1932)CrossRefGoogle Scholar
  41. 41.
    L.L. Schramm. Emulsions, foams, and suspensions: fundamentals and applications, (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Cassandre Leverrier
    • 1
  • Giana Almeida
    • 1
  • Lucia Espinosa-Mu noz
    • 1
  • Gérard Cuvelier
    • 1
    Email author
  1. 1.UMR Ingénierie Procédés Aliments, AgroParisTech, InraUniversité Paris-SaclayMassyFrance

Personalised recommendations