Characteristics of Relationships Between Structure of Gluten Proteins and Dough Rheology – Influence of Dietary Fibres Studied by FT-Raman Spectroscopy

Abstract

The aim of this research was to study which kind of conformational changes in gluten proteins were induced by addition of four dietary fibre (apple-cranberry, cacao, carob and oat) by using FT-Raman spectroscopy and to find relationships between conformational changes and rheological behaviour of bread dough in mixing and extensional tests. Structural studies showed that all fibres induced formation of β-like structures between two protein molecules (pseudo-β-sheets) with the band at 1616 cm−1 in the Raman spectrum. According to Principal Component Analysis, the strongest dependence was between changes in gluten structure and two extensographic parameters (resistance to extension and extensibility). Resistance to extension was positively correlated with content of α-helix and pseudo-β-sheets, while a negative correlation was observed between the parameter and content of β-sheets and β-turns. Gauche-gauche-gauche conformation of disulphide bridges and ability of tyrosine residues to hydrogen bonds creation improved mixing properties as stability of dough.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    S. Kaur, M. Das, Food Sci. Biotechnol. 20, 861 (2011)

    Article  Google Scholar 

  2. 2.

    A.S. Sivam, D. Sun-Waterhouse, S.Y. Quek, C.O. Perera, J. Food Sci. 75, R163 (2010)

    Article  CAS  Google Scholar 

  3. 3.

    J. Wang, C.M. Rosell, C.B. de Barber, Food Chem. 79, 221 (2002)

    Article  CAS  Google Scholar 

  4. 4.

    M. Gomez, F. Ronda, C.A. Blanco, P.A. Caballero, A. Apesteguia, Eur. Food Res. Technol. 216, 51 (2003)

    CAS  Google Scholar 

  5. 5.

    D. Peressini, A. Sensidoni, J. Cereal Sci. 49, 190 (2009)

    Article  CAS  Google Scholar 

  6. 6.

    A. Skendi, M. Papageorgiou, C.G. Biliaderis, J. Food Eng. 91, 594 (2009)

    Article  CAS  Google Scholar 

  7. 7.

    A. Miś, J. Food Eng. 102, 369 (2011)

    Article  Google Scholar 

  8. 8.

    A. Miś, D. Dziki, J. Cereal Sci. 57, 471 (2013)

    Article  Google Scholar 

  9. 9.

    N.N. Rosa, C. Baron, C. Gaiani, C. Dufour, V. Micard, J. Cereal Sci. 57, 84 (2013)

    Article  CAS  Google Scholar 

  10. 10.

    C. Collar, E. Santos, C.M. Rosell, J. Food Eng. 78, 820 (2007)

    Article  Google Scholar 

  11. 11.

    H. Wieser, Food Microbiol. 24, 115 (2007)

    Article  CAS  Google Scholar 

  12. 12.

    A.S. Sivam, D. Sun-Waterhouse, C.O. Perera, G.I.N. Waterhouse, Food Chem. 131, 802 (2012)

    Article  CAS  Google Scholar 

  13. 13.

    B.W. Seabourn, O.K. Chung, P.A. Seib, P.R. Mathewson, J. Agric. Food Chem. 56, 4236 (2008)

    Article  CAS  Google Scholar 

  14. 14.

    M. Mejri, B. Roge, A. BenSouissi, F. Michels, M. Mathlouni, Food Chem. 92, 7 (2005)

    Article  CAS  Google Scholar 

  15. 15.

    A. Rygula, K. Majzner, K.M. Marzec, A. Kaczor, M. Pilarczyk, M. Barańska, J. Raman Spectrosc. 44, 1061 (2013)

    Article  CAS  Google Scholar 

  16. 16.

    E.G. Ferrer, A.V. Gomez, M.C. Anon, M.C. Puppo, Spectrochim. Acta A 79, 278 (2011)

    Article  CAS  Google Scholar 

  17. 17.

    A.V. Gomez, E.G. Ferrer, M.C. Anon, M.C. Puppo, J. Mol. Struct. 1033, 51 (2013)

    Article  CAS  Google Scholar 

  18. 18.

    A.S. Sivam, D. Sun-Waterhouse, C.O. Perera, G.I.N. Waterhouse, Food Res. Int. 2013(50), 574 (2013)

    Article  Google Scholar 

  19. 19.

    R. Kuktaite, H. Larsson, E. Johansson, J. Cereal Sci. 40, 31 (2004)

    Article  CAS  Google Scholar 

  20. 20.

    E. Pena, A. Bernardo, C. Soler, N. Jouve, Euphytica 143, 169 (2005)

    Article  CAS  Google Scholar 

  21. 21.

    V.L. Singleton, J.A. Rossi Jr., Am. J. Enol. Vitic. 16, 144 (1965)

    CAS  Google Scholar 

  22. 22.

    A. Miś, Acta Agrophysica 128, 1 (2005) (in Polish)

    Google Scholar 

  23. 23.

    K. Nakamura, S. Era, Y. Ozaki, M. Sogami, T. Hayashi, M. Murakami, FEBS Lett. 417, 375 (1997)

    Article  CAS  Google Scholar 

  24. 24.

    H. Chen, G.L. Rubenthaler, E.G. Schanus, J. Food Sci. 53, 304 (1988)

    Article  CAS  Google Scholar 

  25. 25.

    C.M. Rosell, E. Santos, C. Collar, Eur. Food Res. Technol. 231, 535 (2010)

    Article  CAS  Google Scholar 

  26. 26.

    C.M. Rosell, J.A. Rojas, C.B. de Barber, Food Hydrocoll. 15, 75 (2001)

    Article  CAS  Google Scholar 

  27. 27.

    M.W.J. Noort, D. van Haaster, Y. Hemery, H.A. Schols, R.J. Hamer, J. Cereal Sci. 52, 59 (2010)

    Article  CAS  Google Scholar 

  28. 28.

    A. Nawrocka, Intensiv. Agric. 28, 311 (2014)

    CAS  Google Scholar 

  29. 29.

    D.C. Lee, P.I. Haris, D. Chapman, R.C. Mitchell, Biochemistry 29, 9185 (1990)

    Article  CAS  Google Scholar 

  30. 30.

    P. Juszczyk, A.S. Kołodziejczyk, Z. Grzonka, J. Pept. Sci. 15, 23 (2008)

    Article  Google Scholar 

  31. 31.

    P.R. Shewry, A.S. Tatham, J. Cereal Sci. 25, 207 (1997)

    Article  CAS  Google Scholar 

  32. 32.

    H. Sugeta, Spectrochim. Acta A 1975(31), 1729 (1975)

    Article  Google Scholar 

  33. 33.

    A. Nawrocka, M. Szymańska-Chargot, A. Miś, A.A. Ptaszyńska, R. Kowalski, P. Waśko, W.I. Gruszecki, J. Raman Spectrosc. 46, 309 (2015)

    Article  CAS  Google Scholar 

  34. 34.

    J.S. Wall, J. Agric. Food Chem. 19, 619 (1971)

    Article  CAS  Google Scholar 

  35. 35.

    Y. Zhou, D. Zhao, T.J. Foster, Y. Liu, Y. Wang, S. Nirasawa, E. Tatsumi, Y. Cheng, Food Chem. 143, 163 (2014)

    Article  CAS  Google Scholar 

  36. 36.

    G. Meng, C.-Y. Ma, D.L. Phillips, Food Chem. 81, 411 (2003)

    Article  CAS  Google Scholar 

  37. 37.

    M.N. Siamwiza, R.C. Lord, M.C. Chen, Biochemistry 14, 4870 (1975)

    Article  CAS  Google Scholar 

  38. 38.

    P.R. Carey, in Biochemical Applications of Raman and Resonance Raman Spectroscopies, ed. by P.R. Carey, (Academic Press, New York 1982), p.65.

  39. 39.

    L. Lindlaud, E. Ferrer, M.C. Puppo, C. Ferrero, J. Agric. Food Chem. 59, 713 (2011)

    Article  Google Scholar 

  40. 40.

    A. Angioloni, C. Collar, J. Food Eng. 91, 526 (2009)

    Article  CAS  Google Scholar 

  41. 41.

    P.S. Belton, J. Cereal Sci. 29, 103 (1999)

    Article  CAS  Google Scholar 

  42. 42.

    A.N. Bloksma, Cereal Chem. 52, 170r (1975).

  43. 43.

    P. Köhler, H.-D. Beltz, H. Wieser, Z. Lebensm, Unters. Forsch. 196, 239 (1993)

    Article  Google Scholar 

  44. 44.

    M. Piber, P. Koehler, J. Agric. Food Chem. 53, 5276 (2005)

    Article  CAS  Google Scholar 

  45. 45.

    M. Wang, G. Oudgenoeg, T. van Vliet, R. Hamer, J. Cereal Sci. 38, 95 (2003)

    Article  CAS  Google Scholar 

  46. 46.

    M. Wang, T. van Vliet, R. Hamer, J. Cereal Sci. 39, 395 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Nawrocka.

Electronic supplementary material

ESM 1

(DOC 304 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nawrocka, A., Miś, A. & Szymańska-Chargot, M. Characteristics of Relationships Between Structure of Gluten Proteins and Dough Rheology – Influence of Dietary Fibres Studied by FT-Raman Spectroscopy. Food Biophysics 11, 81–90 (2016). https://doi.org/10.1007/s11483-015-9419-y

Download citation

Keywords

  • Dietary fibre supplementation
  • Bread dough
  • Raman spectroscopy
  • Amid I band
  • Secondary structure
  • Rheological properties