Skip to main content
Log in

Ca2+-Induced Conformational Changes of Myosin from Silver Carp (Hypophthalmichthys molitrix) in Gelation

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The role of Ca2+ in gelation of myosin extracted from silver carp (Hypophthalmichthys molitrix) was investigated. Compared with the control, myosin with CaCl2 showed higher turbidity and larger particle size, indicating that CaCl2 contributed to myosin aggregation. Addition of CaCl2 decreased the myosin thermostability and promoted the unfolding of myosin α-helical structure during heating. Moreover, CaCl2 could increase surface hydrophobicity at low temperatures (20–40 °C) and promoted hydrophobic interactions. Meanwhile, it decreased the temperature of disulfide bond formation by about 10 °C. Addition of 10–40 mM CaCl2 favored activation of the Ca2+-ATPase activity at 20 to 30 °C, but not obvious with elevated temperatures. Ca2+-ATPase activity of myosin was undetectable when heated above 60 °C because of severe structural damage of myosin heads. G’ at both the first and second peaks increased with increasing CaCl2 concentration. Therefore, CaCl2 was beneficial for gelation of myosin by inducing the unfolding of myosin and enhancing disulfide bonds along with hydrophobic interactions between neighboring myosin molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Benjakul, S. Phatcharat, A. Tammatinna, W. Visessanguan, H. Kishimura, Improvement of gelling properties of lizardfish mince as influenced by microbial transglutaminase and fish freshness. J. Food Sci. 73, S239–S246 (2008)

    Article  CAS  Google Scholar 

  2. G. Tabilo-Munizaga, G.V. Barbosa-Canovas, Pressurized and heat-treated surimi gels as affected by potato starch and egg white: microstructure and water-holding capacity. LWT-Food Sci. Technol. 38, 47–57 (2005)

    Article  CAS  Google Scholar 

  3. S. Rawdkuen, S. Benjakul, Whey protein concentrate: Autolysis inhibition and effects on the gel properties of surimi prepared from tropical fish. Food Chem. 106, 1077–1084 (2008)

    Article  CAS  Google Scholar 

  4. Y.Q. Ding, Y.M. Liu, H. Yang, R. Liu, J.H. Rong, S.M. Zhao, S.B. Xiong, Effects of CaCl2 on chemical interactions and gel properties of surimi gels from two species of carps. Eur. Food Res. Technol. 233, 569–576 (2011)

    Article  CAS  Google Scholar 

  5. Y.A. Arfat, S. Benjakul, Impact of zinc salts on heat-induced aggregation of natural actomyosin from yellow stripe trevally. Food Chem. 135, 2721–2727 (2012)

    Article  CAS  Google Scholar 

  6. R. Baldwin, How Hofmeister ion interactions affect protein stability. Biophys. J. 71, 2056–2063 (1996)

    Article  CAS  Google Scholar 

  7. S. Jeyarajah, J.C. Allen, Calcium binding and salt-induced structure changes of native and preheated β-lactoglobulin. J. Agric. Food Chem. 42, 80–85 (1994)

    Article  CAS  Google Scholar 

  8. F.Q. Zhao, R. Craig, Ca2+ causes release of myosin heads from the thick filament surface on the milliseconds time scale. J. Mol. Biol. 327, 145–158 (2003)

    Article  CAS  Google Scholar 

  9. J. Yongsawatdigul, S. Sinsuwan, Aggregation and conformational changes of tilapia actomyosin as affected by calcium ion during setting. Food Hydrocoll. 21, 359–367 (2007)

    Article  CAS  Google Scholar 

  10. T.C. Lanier, J. Yongsawatdigul, P. Carvajal, Surimi gelation chemistry. in Surimi and surimi seafood, 3nd Eds. (CRC Press, Boca Raton, 2014), pp. 101-140

  11. B.-O. Hemung, J. Yongsawatdigul, Ca2+ affects physicochemical and conformational changes of threadfin bream myosin and actin in a setting model. J. Food Sci. 70, c455–c460 (2005)

    Article  CAS  Google Scholar 

  12. J.W. Park, T.C. Lanier, Scanning calorimetric behavior of tilapia myosin and actin due to processing of muscle and protein purification. J. Food Sci. 54, 49–51 (1989)

    Article  CAS  Google Scholar 

  13. O.H. Lowry, N.J. Rosebrough, R.J. Randall, Protein measurement with Folin phenol reagent. J. Biol. Chem. 193, 256–275 (1951)

    Google Scholar 

  14. S. Benjakul, W. Visessanguan, S. Ishizaki, M. Tanaka, Differences in gelation characteristics of natural actomyosin from two species of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus. J. Food Sci. 66, 1311–1318 (2001)

    Article  CAS  Google Scholar 

  15. G.T. Yang, C.C. Wu, H.M. Martinez, Caculation of protein conformation from circular dichroism. Methods Enzymol. 130, 208–269 (1986)

    Article  CAS  Google Scholar 

  16. J. Yongsawatdigul, J.W. Park, Thermal denaturation and aggregation of threadfin bream actomyosin. Food Chem. 83, 409–416 (2003)

    Article  CAS  Google Scholar 

  17. G.L. Ellman, Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959)

    Article  CAS  Google Scholar 

  18. S. Benjakul, A.T. Seymour, M.T. Morrissey, H. An, Physicochemical changes of Pacific whiting muscle proteins during iced storage. J. Food Sci. 62, 729–733 (1997)

    Article  CAS  Google Scholar 

  19. C.H. Fiske, Y. Subbarow, The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375–400 (1925)

    CAS  Google Scholar 

  20. R. Liu, S.M. Zhao, B.J. Xie, S.B. Xiong, Contribution of protein conformation and intermolecular bonds to fish and pork gelation properties. Food Hydrocoll. 25, 898–906 (2011)

    Article  CAS  Google Scholar 

  21. I. Koshiyama, M. Hamano, D. Fukushima, A heat denaturation study of the 11S globulin in soybean seeds. Food Chem. 6, 309–322 (1981)

    Article  CAS  Google Scholar 

  22. E.D. Murray, S.D. Arntfield, M.A.H. Ismond, The influence of processing parameters on food protein functionality. II. Factors affecting thermal properties as analyzed by differential scanning calorimetry. Can. Inst. Food Sci. Technol. J. 18, 158–162 (1985)

    Article  CAS  Google Scholar 

  23. M. Ogawa, T. Ehara, T. Tamiya, T. Tsuchiya, Thermal stability of fish myosin. Comp. Biochem. Physiol. B: Comp. Biochem. 106, 517–521 (1993)

    Google Scholar 

  24. T. Sano, S.F. Noguchi, J.J. Matsumoto, T. Tsuchiya, Thermal gelation characteristics of myosin subfragments. J. Food Sci. 55, 55–58 (1990)

    Article  CAS  Google Scholar 

  25. W. Visessanguan, M. Ogawa, S. Nakai, H. An, Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin. J. Agric. Food Chem. 48, 1016–1023 (2000)

    Article  CAS  Google Scholar 

  26. T. Maita, E. Yajima, S. Nagata, T. Miyanishi, S. Nakayama, G. Matsuda, The primary structure of skeletal muscle myosin heavy chain: IV. Sequence of the rod, and the complete 1,938-residue sequence of the heavy chain. J. Biochem. 110, 75–87 (1991)

    CAS  Google Scholar 

  27. D. Jia, J. You, Y. Hu, R. Liu, S.B. Xiong, Effect of CaCl2 on denaturation and aggregation of silver carp myosin during setting. Food Chem. 185, 212–218 (2015)

    Article  CAS  Google Scholar 

  28. C.M. Bryant, D.J. McClements, Influence of NaCl and CaCl2 on cold-set gelation of heat-denatured whey protein. J. Food Sci. 65, 801–804 (2000)

    Article  CAS  Google Scholar 

  29. E.A. Foegeding, T.C. Lanier, H.O. Hultin, Characteristics of edible muscle tissues. in Food Chemistry (New York: Marcel Dekker, 3, 1996), p. 879–942

  30. G.A. Sánchez, D.E.D. Croce, A.C. Casadoumecq, S.B. Richard, D. Takara, Characterization of the sarcoplasmic reticulum Ca-ATPase from rabbit temporalis muscle. Arch. Oral Boil. 57, 1429–1437 (2012)

    Article  Google Scholar 

  31. S. Lowey, H.S. Slayter, A.G. Weeds, H. Baker, Substructure of the myosin molecule: I. Subfragments of myosin by enzymic degradation. J. Mol. Biol. 42, 1–29 (1969)

    Article  CAS  Google Scholar 

  32. A. Jafarpour, E.M. Gorczyca, Rheological Characteristics and Microstructure of Common Carp (Cyprinus carpio) Surimi and Kamaboko Gel. Food Biophys. 4, 172–179 (2009)

    Article  Google Scholar 

  33. B. Egelandsdal, B. Martinsen, K. Autio, Rheological parameters as predictor of protein functionalitys: A model study using myofibrils of different fiber-type composition. Meat Sci. 39, 97–111 (1995)

    Article  CAS  Google Scholar 

  34. Z.H. Reed, J.W. Park, Thermophysical characterization of tilapia myosin and its subfragments. J. Food Sci. 76, c1050–c1055 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the “National Natural Science Foundation of China (No. 31201391)”, and the “China Agriculture Research System (No. CARS-46-23)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Su, S., Regenstein, J.M. et al. Ca2+-Induced Conformational Changes of Myosin from Silver Carp (Hypophthalmichthys molitrix) in Gelation. Food Biophysics 10, 447–455 (2015). https://doi.org/10.1007/s11483-015-9408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-015-9408-1

Keywords

Navigation