Skip to main content

Advertisement

Log in

Protein-Polysaccharide Hydrogel Particles Formed by Biopolymer Phase Separation

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Biopolymer-based hydrogel particles were fabricated using a segregation-aggregation phase separation mechanism. Pectin-coated whey protein isolate (WPI) hydrogel particles (d ~ 2 μm) were formed when solutions of heat-denatured (90 °C/10 min) WPI (1.5 %) and pectin (1.5 %) were mixed at pH 7, and then adjusted to pH 5 with constant stirring. Hydrogel particle properties and suspension appearance were strongly influenced by pH (2 to 8) and calcium chloride (0–5 mM) due to the importance of electrostatic interactions. At pH 2 to 3, extensive biopolymer complexation occurred leading to highly viscous solutions. At pH 6 to 8, biopolymer complexes disintegrated due to weakening of electrostatic attraction leading to clear solutions. Calcium addition promoted biopolymer aggregation and an increase in viscosity. All systems containing intact hydrogel particles had a whitish appearance similar to that of milk. These biopolymer-based hydrogel particles may be suitable as texture modifiers, fat replacers, or delivery systems for utilization in foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. N.L. Novak, K.D. Brownell, Psychiatr. Clin. N. Am. 34(4), 895–909 (2011)

    Article  Google Scholar 

  2. C.J. Lee, Y. Kim, S.J. Choi, T.W. Moon, Food Chem. 133(4), 1222–1229 (2012)

    Article  CAS  Google Scholar 

  3. N.T. Desai, L. Shepard, M.A. Drake, J. Dairy Sci. 96(12), 7454–7466 (2013)

    Article  CAS  Google Scholar 

  4. L. Shepard, R.E. Miracle, P. Leksrisompong, M.A. Drakel, J. Dairy Sci. 96(9), 5435–5454 (2013)

    Article  CAS  Google Scholar 

  5. Z. Ma, J.I. Boye, Food Bioprocess. Technol. 6(3), 648–670 (2013)

    Article  CAS  Google Scholar 

  6. D.J. McClement, Annu. Rev. Food Sci. Technol. 1, 241–269 (2010)

    Article  Google Scholar 

  7. P. Sanguansri, M.A. Augustin, Trends Food Sci. Technol. 17(10), 547–556 (2006)

    Article  CAS  Google Scholar 

  8. K.P. Velikov, E. Pelan, Soft Matter 4(10), 1964–1980 (2008)

    Article  CAS  Google Scholar 

  9. A. Matalanis, O.G. Jones, D.J. McClements, Food Hydrocoll. 25(8), 1865–1880 (2011)

    Article  CAS  Google Scholar 

  10. S. Bayarri, I. Chulia, E. Costell, Food Hydrocoll. 24(6–7), 578–587 (2010)

    Article  CAS  Google Scholar 

  11. H.P. Su, C.P. Lien, T.A. Lee, J.H. Ho, J. Sci. Food Agric. 90(5), 806–812 (2010)

    CAS  Google Scholar 

  12. G. Lorenzo, N. Zaritzky, A. Califona, Food Res. Int. 41(5), 487–494 (2008)

    Article  CAS  Google Scholar 

  13. B.J.D. Le Reverend, I.T. Norton, P.W. Cox, F. Spyropoulos, Curr. Opin. Colloid Interface Sci. 15, 84–89 (2010)

    Article  Google Scholar 

  14. M. Douaire, I.T. Norton, J. Sci. Food Agric. 93(13), 3147–3154 (2013)

    Article  CAS  Google Scholar 

  15. H.E. Swaisgood, in Food Chemistry, ed. by S. Damodaran, K.L. Parkin, O.R. Fennema (CRC Press, Boca Raton, 2008), pp. 886–921

    Google Scholar 

  16. M.F. Basanta, M.F.D. Pla, M.D. Raffo, C.A. Stortz, A.M. Rojas, J. Food Eng. 126, 149–155 (2014)

    Article  CAS  Google Scholar 

  17. K.E. Allen, B.S. Murray, E. Dickinson, Food Hydrocoll. 22(4), 690–699 (2008)

    Article  CAS  Google Scholar 

  18. C. Lobato-Calleros, M.T. Recillas-Mota, T. Espinosa-Solares, J. Alvarez-Ramirez, E.J. Vernon-Carter, J. Texture Stud. 40(6), 657–675 (2009)

    Article  Google Scholar 

  19. A. Matalanis, D.J. McClements, Food Hydrocoll. 31(1), 15–25 (2013)

    Article  CAS  Google Scholar 

  20. C. Chung, B. Degner, D.J. McClements, Food Res. Int. 54(1), 829–836 (2013)

    Article  CAS  Google Scholar 

  21. C. Chung, B. Degner, E.A. Decker, D.J. McClements, Innov. Food Sci. Emerg. Technol. 20, 324–334 (2013)

    Article  CAS  Google Scholar 

  22. A. Matalanis, D.J. McClements, Food Biophys. 7(1), 72–83 (2012)

    Article  Google Scholar 

  23. A. Matalanis, U. Lesmes, E.A. Decker, D.J. McClements, Food Hydrocoll. 24(8), 689–701 (2010)

    Article  CAS  Google Scholar 

  24. H.J. Kim, E.A. Decker, D.J. McClements, Food Hydrocoll. 20(5), 586–595 (2006)

    Article  CAS  Google Scholar 

  25. J.Y. Chun, G.P. Hong, S. Surassmo, J. Weiss, S.G. Min, M.J. Choi, Polymer 55(16), 4379–4384 (2014)

    Article  CAS  Google Scholar 

  26. C. Chung, B. Degner, D.J. McClements, LWT Food Sci. Technol. 54(2), 336–345 (2013)

    Article  CAS  Google Scholar 

  27. C.M. Bryant, D.J. McClements, J. Food Sci. 65(5), 801–804 (2000)

    Article  CAS  Google Scholar 

  28. K. Ako, T. Nicolai, D. Durand, Biomacromolecules 11, 864–871 (2010)

    Article  CAS  Google Scholar 

  29. H. Kastner, U. Einhorn-Stoll, B. Senge, Food Hydrocoll. 27(1), 42–49 (2012)

    Article  CAS  Google Scholar 

  30. I. Fraeye, I. Colle, E. Vandevenne et al., Innov. Food Sci. Emerg. Technol. 11(2), 401–409 (2010)

    Article  CAS  Google Scholar 

  31. E. Riou, P. Havea, O. McCarthy, P. Watkinson, H. Singh, J. Agric. Food Chem. 59, 13156–13164 (2011)

    Article  CAS  Google Scholar 

  32. D.J. McClements, M.K. Keogh, J. Sci. Food Agric. 69(1), 7–14 (1995)

    Article  CAS  Google Scholar 

  33. A. Matlais, G.E. Remondetto, M. Subirade, Food Hydrocoll. 22, 550–559 (2008)

    Article  Google Scholar 

  34. C. Chung, B. Degner, D.J. McClements, Food Hydrocoll. 30(1), 281–291 (2013)

    Article  CAS  Google Scholar 

  35. C. Chung, B. Degner, D.J. McClements, Food Res. Int. 48(2), 641–649 (2012)

    Article  CAS  Google Scholar 

  36. D.J. McClements, Adv. Colloid Interf. Sci. 97(1–3), 63–89 (2002)

    Article  CAS  Google Scholar 

  37. W. Chantrapornchai, F.M. Clydesdale, D.J. McClements, J. Food Sci. 66(3), 464–469 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Julian McClements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duval, S., Chung, C. & McClements, D.J. Protein-Polysaccharide Hydrogel Particles Formed by Biopolymer Phase Separation. Food Biophysics 10, 334–341 (2015). https://doi.org/10.1007/s11483-015-9396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-015-9396-1

Keywords