Skip to main content
Log in

Water Dynamics and Structural Relaxation in Concentrated Sugar Solutions

  • SPECIAL ISSUE ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The collective dynamics of concentrated aqueous solutions of the three well-known homologous disaccharides, namely, maltose, sucrose and trehalose, have been studied in an unexplored frequency region by Brillouin ultraviolet light scattering, as a function of temperature and concentration. In trehalose solutions, for water concentrations close to the sugar hydration number, the structural relaxation time above the freezing point of water proves to be 10 % smaller than in maltose/sucrose solutions, presaging a different reorganisation of the sugar matrix. This effect could help in reducing both desiccation stresses and ice formation in anhydrobiotic organisms. The relevance of this behaviour in bioprotection is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.J. Burke, in Membranes, Metabolism and Dry Organisms, ed. by A.C. Leopold (Cornell University Press, Ithaca, New York, 1986)

    Google Scholar 

  2. R.J. Williams, A.C. Leopold, The glassy state in corn embryos. Plant Physiol. 89, 977–981 (1989)

    Article  CAS  Google Scholar 

  3. K.I. Jönsson, R. Bertolani, Facts and fiction about long-term survival in Tardigrades. J. Zool. 255, 121–123 (2001)

    Article  Google Scholar 

  4. J.H. Crowe, F.A. Hoekstra, L.M. Crowe, Anhydrobiosis. Ann. Rev. Physiol. 54, 579–599 (1992)

    Article  CAS  Google Scholar 

  5. V. Molinero, T. Çağın, W.A. Goddard III, Sugar, water and free volume networks in concentrated sucrose solutions. Chem. Phys. Lett. 377, 469–474 (2003)

    Article  CAS  Google Scholar 

  6. J. Buitink, O. Leprince, Glass formation in plant anhydrobiotes: survival in the dry state. Crybiology 48, 215–228 (2004)

    Article  CAS  Google Scholar 

  7. C.J. Roberts, P.G. Debenedetti, Structure and dynamics in concentrated, amorphous carbohydrate water systems by molecular dynamics simulation. J. Phys. Chem. B 103, 7308–7318 (1999)

    Article  CAS  Google Scholar 

  8. S. Di Fonzo, C. Masciovecchio, F. Bencivenga, A. Gessini, D. Fioretto, L. Comez, A. Morresi, M.E. Gallina, O. De Giacomo, A. Cesàro, Concentration-temperature dependencies of structural relaxation time in trehalose water solutions by Brillouin inelastic UV scattering. J. Phys. Chem. A 111, 12577–12583 (2007)

    Article  Google Scholar 

  9. M. Paolantoni, L. Comez, M.E. Gallina, P. Sassi, F. Scarponi, D. Fioretto, A. Morresi, Light scattering spectra of water in trehalose aqueous solutions: evidence for two different solvent relaxation processes. J. Phys. Chem. B 113, 7874–7878 (2009)

    Article  CAS  Google Scholar 

  10. M. Heyden, E. Bründermann, U. Heugen, G. Niehues, D.M. Leitner, M. Havenith, Long-range influence of carbohydrates on the solvation dynamics of water answers from terahertz absorption measurements and molecular modeling simulations. J. Am. Chem. Soc. 130, 5773–5779 (2008)

    Article  CAS  Google Scholar 

  11. M.E. Gallina, L. Comez, A. Morresi, M. Paolantoni, S. Perticaroli, P. Sassi, D. Fioretto, Rotational dynamics of trehalose in aqueous solutions studied by depolarized light scattering. J. Chem. Phys. 132, 214508–6 (2010)

    Article  CAS  Google Scholar 

  12. A. Magno, P. Gallo, Understanding the mechanisms of bioprotection: a comparative study of aqueous solutions of trehalose and maltose upon supercooling. J. Phys. Chem. Lett. 2, 977–982 (2011)

    Article  CAS  Google Scholar 

  13. W. Goetze, L. Sjoegren, Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241–376 (1992)

    Article  CAS  Google Scholar 

  14. C. Masciovecchio, S.C. Santucci, A. Gessini, S.D. Fonzo, G. Ruocco, F. Sette, Structural relaxation in liquid water by inelastic UV scattering. Phys. Rev. Lett. 92, 255507–4 (2004)

    Article  CAS  Google Scholar 

  15. S.C. Santucci, L. Comez, F. Scarponi, G. Monaco, R. Verbeni, J.-F. Legrand, C. Masciovecchio, A. Gessini, D. Fioretto, Onset of the alpha-relaxation in the glass-forming solution LiCl–6H2O revealed by Brillouin scattering techniques. J. Chem. Phys. 131, 154507–10 (2009)

    Article  CAS  Google Scholar 

  16. F. Bencivenga, A. Cimatoribus, A. Gessini, M.G. Izzo, C. Masciovecchio, Temperature and density dependence of the structural relaxation time in water by inelastic ultraviolet scattering. J. Chem. Phys. 131, 1445021–7 (2009)

    Article  Google Scholar 

  17. F. Sussich, S. Bortoluzzi, A. Cesàro, Trehalose dehydration under confined condition. Thermochim. Acta 391, 137–150 (2002)

    Article  CAS  Google Scholar 

  18. C. Masciovecchio, D. Cocco, A. Gessini, Inelastic ultra-violet scattering as a tool to investigate collective excitations in condensed matter physics. AIP Conf. Proc. 705, 1190–1192 (2004)

    Article  CAS  Google Scholar 

  19. B.P. Chandra, S.C. Bhaiya, A simple, accurate alternative to the minimum deviation method of determining the refractive index of liquids. Am. J. Phys. 51, 160–161 (1983)

    Article  CAS  Google Scholar 

  20. B. Fak, B. Dorner, Institute Laue Langevin (Grenoble France) Tech. Rep. No. 92FA008S, 1992.

  21. J.J. More, in Numerical Analysis, Lecture Notes in Mathematics, ed. by G.A. Watson, vol. 630 (Springer, Berlin, 1977)

    Google Scholar 

  22. S.P. Das, Mode-coupling theory and the glass transition in supercooled liquids. Rev. Mod. Phys. 76, 785–851 (2004)

    Article  CAS  Google Scholar 

  23. A. Schönhals, F. Kremer, A. Hofmann, E.W. Fischer, E. Schlosser, Anomalies in the scaling of the dielectric a-relation. Phys. Rev. Lett. 70, 3459–3462 (1993)

    Article  Google Scholar 

  24. U. Schneider, P. Lunkenheimer, R. Brand, A. Loidl, Broadband dielectric spectroscopy on glass-forming propylene carbonate. Phys. Rev. E 59, 6924–6936 (1999)

    Article  CAS  Google Scholar 

  25. M. Gordon, J.S. Taylor, Ideal copolymers and the second-order transitions of synthetic rubbers. I. J. Appl. Chem. 2, 493–500 (1952)

    Article  CAS  Google Scholar 

  26. H.R. Corti, C.A. Angell, T. Auffret, H. Levine, M.P. Buera, D.S. Reid, Y.H. Roos, L. Slade, Pure Appl. Chem. 82, 1065–1097 (2010)

    Article  CAS  Google Scholar 

  27. M.P. Buera, Y. Roos, H. Levine, L. Slade, H.R. Corti, D.S. Reid, T. Auffret, C.A. Angell, Pure Appl. Chem. 83, 1567–1617 (2011)

    Article  CAS  Google Scholar 

  28. F. Nodale, MS Thesis, University of Trieste, 2008.

  29. G.A. Frank, Measurement analysis of glass transition temperature for sucrose and trehalose aqueous solutions. J. Phys. Chem. Ref. Data 36, 1279–1285 (2007)

    Article  CAS  Google Scholar 

  30. C.A. Angell, E.J. Sare, Glass-forming composition regions and glass transition temperatures for aqueous electrolyte solutions. J. Chem. Phys. 52, 1058–1068 (1970)

    Article  CAS  Google Scholar 

  31. S.L. Shamblin, L.S. Taylor, G. Zografi, Mixing behavior of colyophilized binary systems. J. Pharm. Sci. 87, 694–701 (1998)

    Article  CAS  Google Scholar 

  32. F. Sussich, A. Cesàro, J. Thermal Anal, Calorim. 62, 757–768 (2000)

    Article  CAS  Google Scholar 

  33. A. Cesàro, O. De Giacomo, F. Sussich, Food Chemistry 106, 1318–1328 (2008)

    Article  Google Scholar 

  34. P.D. Orford, R. Parker, S.G. Ring, Aspects of the glass transition behaviour of mixtures of carbohydrates of low molecular weight. Carbohydr. Res. 196, 11–18 (1990)

    Article  CAS  Google Scholar 

  35. D.P. Miller, J.J. de Pablo, J. Phys. Chem. B 104, 8876 (2000)

    Article  CAS  Google Scholar 

  36. J. Liesebach, T. Rades, M. Lima, New method for the determination of the unfrozen matrix concentration and the maximal freeze-concentration. Thermochim. Acta 401(159–168) (2003)

    Google Scholar 

  37. T. Furuki, Effect of molecular structure on thermodynamic properties of carbohydrates. A calorimetric study of aqueous di- and oligosaccharides at subzero temperatures. Carbohyd. Research 337, 441–450 (2002)

    Article  CAS  Google Scholar 

  38. I. Köper, M.C. Bellissent-Funel, W. Petry, J. Chem. Phys 122, 0145141–0145146 (2005)

    Article  Google Scholar 

  39. G. Monaco, A. Cunsolo, G. Ruocco, F. Sette, Phys. Rev. E 60, 5505–5521 (1999)

    Article  CAS  Google Scholar 

  40. P. Bordat, A. Lerbret, J.-P. Demaret, F. Affouard, M. Descamps, Comparative study of trehalose, sucrose and maltose in water solutions by molecular modelling. Europhys. Lett. 65, 41–47 (2004)

    Article  CAS  Google Scholar 

  41. C. Branca, S. Magazù, G. Maisano, P. Migliardo, Anomalous cryoprotective effectiveness of trehalose: Raman scattering evidences. J. Chem. Phys. 111, 281–288 (1999)

    Article  CAS  Google Scholar 

  42. M. Holmstrup, M. Bayley, H. Ramløv, Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. PNAS 99, 5716–5720 (2002)

    Article  CAS  Google Scholar 

  43. M. Watanabe, T. Kikawada, T. Okuda, Increase of internal ion concentration triggers trehalose synthesis associated with cryptobiosis in larvae of Polypedilum vanderplanki. J. Exp. Biol. 206, 2281–2289 (2003)

    Article  CAS  Google Scholar 

  44. M. Sakurai, T. Furuki, K.-I. Akao, D. Tanaka, Y. Nakahara, T. Kikawada, M. Watanabe, T. Okuda, Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc. Nat. Ac. Sci. 105, 5093–5098 (2008)

    Article  CAS  Google Scholar 

  45. C.W. Vertucci, A.C. Leopold, Bound water in soybean seed and its relation to respiration and imbibitional damage. Plant Physiol. 75, 114–117 (1984)

    Article  CAS  Google Scholar 

  46. A. Orecchini, F. Sebastiani, M. Jasnin, A. Paciaroni, A. De Francesco, C. Petrillo, M. Moulin, M. Haertlein, G. Zaccai, F. Sacchetti, Collective dynamics of intracellular water in living cells. J. Phys. Conf. Ser. 340, 012091–7 (2012)

    Article  Google Scholar 

  47. L. Cordone, G. Cottone, S. Giuffrida, G. Palazzo, G. Venturoli, C. Viappiani, Internal dynamics and protein-matrix coupling in trehalose-coated proteins. Biochim. Biophys. Acta 1749, 252–281 (2005)

    Article  CAS  Google Scholar 

  48. A. Cesàro, All dried up. Nat. Mater. 5, 593–594 (2006)

    Article  Google Scholar 

  49. D. Kilburn, S. Townrow, V. Meunier, R. Richardson, A. Alam, J. Ubbink, Organization and mobility of water in amorphous and crystalline trehalose. Nat. Mater. 5, 632–635 (2006)

    Article  CAS  Google Scholar 

  50. Q. Liu, R.K. Schmidt, B. Teo, P.A. Karplus, J.W. Brady, Molecular dynamics studies of the hydration of α, α-trehalose. J. Am. Chem. Soc. 119, 7851–7862 (1997)

    Article  CAS  Google Scholar 

  51. L. Lupi, L. Comez, M. Paolantoni, D. Fioretto, B.M. Ladanyi, Dynamics of biological water: insights from molecular modeling of light scattering in aqueous trehalose solutions. J. Phys. Chem. B 116, 7499–7508 (2012)

    Article  CAS  Google Scholar 

  52. L.R. Winther, J. Qvist, B. Halle, Hydration and mobility of trehalose in aqueous solution. J. Phys. Chem. B 116, 9196–9207 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Di Fonzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Fonzo, S., Masciovecchio, C., Gessini, A. et al. Water Dynamics and Structural Relaxation in Concentrated Sugar Solutions. Food Biophysics 8, 183–191 (2013). https://doi.org/10.1007/s11483-013-9308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-013-9308-1

Keywords

Navigation