Skip to main content
Log in

The Action of Ligands in the Aggregation Process of Soft Colloidal Solution Monitored by Raman Spectroscopy

  • SPECIAL ISSUE ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The formation of soft colloidal particles in solution and their aggregation process has been studied by Raman spectroscopy. The soft colloidal particles makes up at room temperature by the Sodium Dodecyl Sulfate (SDS) solution over the critical micellar concentration, while the micellar clustering is obtained adding in solution two different ligands: the Kryptofix 2.2.2 (K222) and crown ether 18-Crown-6 (18C6). The chosen ligands molecules are able to interact with the micellar interface inducing the cluster phase formation. Vibrational peaks fingerprints of the micelles formation have been observed and the evidences of the cluster-phase formation have been also achieved in the case of micelles solution doped with the two different macro-cyclic ligands. The ligands action is however different in the two cases as evinced by the careful analysis of the intensity and wavenumber evolution of characteristic Raman peaks at different ligants concentration values. The cluster phase formation and the effects induced on the hydration layer are analyzed showing how Raman spectroscopy is able to gain insight into self-assembly of soft colloidal particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Romano, F. Sciortino, Nat. Mater. 10, 171 (2011)

    Article  CAS  Google Scholar 

  2. D.J. Kraft et al., PNAS 109, 10787 (2012)

    Article  CAS  Google Scholar 

  3. S. Corezzi, D. Fioretto, F. Sciortino, Soft Matter 8, 11207 (2012)

    Article  CAS  Google Scholar 

  4. M. Mattarelli, M. Montagna, T. Still, D. Schneider, G. Fytas, Soft Matter 8, 4235 (2012)

    Article  CAS  Google Scholar 

  5. T. Still, M. Mattarelli, D. Kiefer, G. Fytas, M. Montagna, J. Phys. Chem. Lett. 1, 2440 (2010)

    Article  CAS  Google Scholar 

  6. S. Caponi, S. Corezzi, D. Fioretto, A. Fontana, G. Monaco, F. Rossi, Phys. Rev. Lett. 102, 027402 (2009)

    Article  CAS  Google Scholar 

  7. D. Fioretto et al., J. Chem. Phys. 128, 214502 (2008)

    Article  Google Scholar 

  8. K.N. Pham et al., Science 296, 104 (2002)

    Article  CAS  Google Scholar 

  9. B. Ruzicka et al., Nat. Mater. 10, 56 (2011)

    Article  CAS  Google Scholar 

  10. B. Capone et al., Phys. Rev. Lett. 109, 238301 (2012)

    Article  Google Scholar 

  11. S. Marchetti et al., J. Phys. Chem. B 117, 3613 (2013). and references therein

    Article  CAS  Google Scholar 

  12. L. Lanzi, M. Carlà, L. Lanzi, C.M.C. Gambi, J. Colloid Interface Sci. 330, 156 (2009)

    Article  CAS  Google Scholar 

  13. D. Truzzolillo, F. Bordi, F. Sciortino, C. Cametti, Eur. Phys. J. E 29, 229 (2009)

    Article  CAS  Google Scholar 

  14. F. Bordi, C. Cametti, C. Marianecci, S. Sennato, J. Phys. Condens. Matter 17, S3423 (2005)

    Article  CAS  Google Scholar 

  15. S. Sennato, S. Marchetti, C.M.C. Gambi, C. Cametti, J. Non-Cryst. Solids 357, 754 (2011)

    Article  CAS  Google Scholar 

  16. G. Cazzolli et al., J. Raman Spectrosc. 43, 1877 (2012)

    Article  CAS  Google Scholar 

  17. M. Picquart, J. Phys. Chem. 90, 243 (1986)

    Article  CAS  Google Scholar 

  18. R.P. Sperline, Langmuir 13, 3715 (1997)

    Article  CAS  Google Scholar 

  19. A.R. Paschoal, A.P. Ayala, R.C.F. Pinto, C.W.A. Paschoal, A.A. Tanaka, J.S. Boaventura Filho, N.M. Josè, J. Raman Spectrosc. 42, 1601 (2011)

    Article  CAS  Google Scholar 

  20. P. Baglioni, C.M.C. Gambi, R. Giordano, J. Teixeira, Colloids Surf. A 121, 47 (1997)

    Article  CAS  Google Scholar 

  21. L. Scaffei, L. Lanzi, C.M.C. Gambi, R. Giordano, P. Baglioni, J. Teixeira, J. Phys. Chem. B 106, 10771 (2002)

    Article  CAS  Google Scholar 

  22. M. Zanatta et al., J. Chem. Phys. 135, 174506 (2011)

    Article  CAS  Google Scholar 

  23. B. Rossi et al., J. Phys. Chem. B116(17), 5323–5327 (2012)

    Google Scholar 

  24. B. Rossi et al., J. of Raman Spectroscopy 42, 1479 (2011)

    Article  CAS  Google Scholar 

  25. L. Comez et al., J. Phys. Chem. Lett. 4, 1188–1192 (2013)

    Article  CAS  Google Scholar 

  26. S. Gialanella et al., Archaeometry 53, 950–962 (2011)

    Article  CAS  Google Scholar 

  27. S. Caponi et al., J. of Non-Cryst. Solids 307, 135–141 (2002)

  28. R. Tuinier, C.G. de Kruif, J. Chem. Phys. 117, 1290 (2002)

    Article  CAS  Google Scholar 

  29. D. Michael Byler, H.M. Farrell Jr., J. Heino Susi, Dairy Sci. 71, 2622 (1988)

    Article  Google Scholar 

  30. A. Syrbe, W.J. Bauer, H. Klostermeyer, Int. Dairy J. 8(3), 179 (1998)

    Article  CAS  Google Scholar 

  31. J.A. Lucey, H. Singh, Food Res. Int. 30, 529–542 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Nanomax (N-CHEM) Progetto Bandiera (CNR) for partially supporting this activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Caponi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caponi, S., Mattarelli, M., Gambi, C.M.C. et al. The Action of Ligands in the Aggregation Process of Soft Colloidal Solution Monitored by Raman Spectroscopy. Food Biophysics 8, 203–208 (2013). https://doi.org/10.1007/s11483-013-9303-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-013-9303-6

Keywords

Navigation