Skip to main content
Log in

A Porosimetric Mapping of Breadcrumb Structures by Differential Scanning Calorimetry and Nuclear Magnetic Resonance

  • SPECIAL ISSUE ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Ice crystals in frozen bread are substantially shaped by the complex pore structures of crumb. In this study we inspected the breadcrumb porosity of ice-filled pores from the profiles of ice crystals mapped by differential scanning calorimetry and nuclear magnetic resonance. Two types of wheat bread containing different amounts of dietary fiber and sugar were studied after frozen storage at −18 °C for 3 weeks. Both pore sizes and pore size distributions were derived via comparing the measurements to those of water-saturated mesoporous silica (MCM-41 C18) with a well-defined pore size distribution. Good consistency was shown for the crumb pore structures obtained using the two techniques. Both bread types featured broad nanometer ranges of pore sizes characterized with largely bimodal size distributions. Besides, the frozen high-fiber bread displayed a higher proportion of large pores and a broader pore size distribution than the high-sugar bread. By comparing such pore size distributions with those obtained previously for the corresponding fresh bread, it can be concluded that structural differences between the two bread types were produced during the frozen storage, manifesting the disparate freezing performances of bread with different formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Ishida, H. Takano, S. Naito, S. Isobe, K. Uemura, T. Haishi, K. Kose, M. Koizumi, H. Kano, Magn. Reson. Imaging 19, 867 (2001)

    Article  CAS  Google Scholar 

  2. Z. Gan, P.R. Ellis, J.D. Schofield, J. Cereal Sci. 21, 215 (1995)

    Article  CAS  Google Scholar 

  3. S. Wang, P. Austin, S. Bell, J. Cereal Sci. 54, 203 (2011)

    Article  Google Scholar 

  4. G. Chen, H. Jansson, K.F. Lustrup, J. Swenson, J. Cereal Sci. 55, 279 (2012)

    Article  CAS  Google Scholar 

  5. S. Cerveny, G.A. Schwartz, R. Bergman, J. Swenson, Phys. Rev. Lett. 93, 245702–245702 (2004)

    Article  Google Scholar 

  6. C.J.A.M. Keetels, T. van Vliet, P. Walstra, J. Cereal Sci. 24, 27 (1996)

    Article  Google Scholar 

  7. M.G. Scanlon, M.C. Zghal, Food Res. Int. 34, 841 (2001)

    Article  Google Scholar 

  8. N. Hamdami, J.-Y. Monteau, A. Le Bail, Food Res. Int. 37, 477 (2004)

    Article  Google Scholar 

  9. J.S. Roberts, C.H. Tong, D.B. Lund, J. Food Sci. 67, 1080 (2002)

    Article  CAS  Google Scholar 

  10. K. Thorvaldsson, H. Janestad, J. Food Eng. 40, 167 (1999)

    Article  Google Scholar 

  11. E. Roca, V. Guillard, S. Guilbert, N. Gontard, J. Cereal Sci. 43, 144 (2006)

    Article  CAS  Google Scholar 

  12. N. Hamdami, J.-Y. Monteau, A. Le Bail, Int. J. Food Sci. Technol. 41, 33 (2006)

    Article  CAS  Google Scholar 

  13. N. Hamdami, J.-Y. Monteau, A. Le Bail, Food Res. Int. 37, 703 (2004)

    Article  Google Scholar 

  14. N. Hamdami, Q.T. Pham, A. Le-Bail, J.-Y. Monteau, J. Food Eng. 82, 418 (2007)

    Article  Google Scholar 

  15. M.C. Zghal, M.G. Scanlon, H.D. Sapirstein, Cereal Chem. 76, 734 (1999)

    Article  CAS  Google Scholar 

  16. M. Brun, A. Lallemand, J.-F. Quinson, C. Eyraud, Thermochim. Acta 21, 59 (1977)

    Article  CAS  Google Scholar 

  17. M.R. Landry, Thermochim. Acta 433, 27 (2005)

    Article  CAS  Google Scholar 

  18. J. Mitchell, J.B.W. Webber, J.H. Strange, Phys. Rep. 461, 1 (2008)

    Article  CAS  Google Scholar 

  19. O.V. Petrov, I. Furó, Prog. Nucl. Magn. Reson. Spectrosc. 54, 97 (2009)

    Article  CAS  Google Scholar 

  20. M. Iza, S. Woerly, C. Danumah, S. Kaliaguine, M. Bousmina, Polymer 41, 5885 (2000)

    Article  CAS  Google Scholar 

  21. Å. Östlund, T. Köhnke, L. Nordstierna, M. Nydén, Cellulose 17, 321 (2010)

    Article  Google Scholar 

  22. C. Boissier, F. Feidt, L. Nordstierna, J. Pharm. Sci. 101, 2512 (2012)

    Article  CAS  Google Scholar 

  23. G. Chen, C. Öhgren, M. Langton, K.F. Lustrup, M. Nydén, J. Swenson, J. Cereal Sci. 57, 120 (2013)

    Article  Google Scholar 

  24. A. Schreiber, I. Ketelsen, G.H. Findenegg, Phys. Chem. Chem. Phys. 3, 1185 (2001)

    Article  CAS  Google Scholar 

  25. J.H. Strange, M. Rahman, E.G. Smith, Phys. Rev. Lett. 71, 3589 (1993)

    Article  CAS  Google Scholar 

  26. K. Ishikiriyama, M. Todoki, J. Colloid Interface Sci. 171, 103 (1995)

    Article  CAS  Google Scholar 

  27. D. Morineau, G. Dosseh, C. Alba-Simionesco, P. Llewellyn, Philos. Mag. B 79, 1847 (1999)

    Article  CAS  Google Scholar 

  28. S. Kittaka, S. Ishimaru, M. Kuranishi, T. Matsuda, T. Yamaguchi, Phys. Chem. Chem. Phys. 8, 3223 (2006)

    Article  CAS  Google Scholar 

  29. J.N. Hay, P.R. Laity, Polymer 41, 6171 (2000)

    Article  CAS  Google Scholar 

  30. V. Kontogiorgos, H.D. Goff, Food Biophys. 1, 202 (2006)

    Article  Google Scholar 

  31. C.M. Rosell, E. Santos, J. Food Eng. 98, 273 (2010)

    Article  Google Scholar 

  32. D. Peressini, A. Sensidoni, J. Cereal Sci. 49, 190 (2009)

    Article  CAS  Google Scholar 

  33. E.L. Almeida, Y.K. Chang, C.J. Steel, LWT Food Sci. Technol. 50, 545 (2013)

    Article  CAS  Google Scholar 

  34. J. Filipović, S. Popov, N. Filipović, Chem. Ind. Chem. Eng. Q. 14, 257 (2008)

    Article  Google Scholar 

  35. I. Furó, J. Daicic, Nord. Pulp Paper Res. J. 14, 221 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Kaare Lustrup for helping in preparing the bread and Shigeharu Kittaka for providing MCM-41 C18. Å. Ö. gratefully acknowledges the financial support from Södra. This work was financially supported by the Swedish Energy Agency, the Swedish Research Council, Lantmännen Food R&D and SuMo Biomaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Östlund, Å., Nordstierna, L. et al. A Porosimetric Mapping of Breadcrumb Structures by Differential Scanning Calorimetry and Nuclear Magnetic Resonance. Food Biophysics 8, 209–215 (2013). https://doi.org/10.1007/s11483-013-9297-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-013-9297-0

Keywords

Navigation