Food Biophysics

, Volume 8, Issue 3, pp 192–202 | Cite as

Glass Transition and Water Dynamics in Hyaluronic Acid Hydrogels

  • Anna Panagopoulou
  • Joan Vázquez Molina
  • Apostolos Kyritsis
  • Manuel Monleón Pradas
  • Anna Vallés Lluch
  • Gloria Gallego Ferrer
  • Polycarpos Pissis
SPECIAL ISSUE ARTICLE

Abstract

Glass transition and water dynamics in hydrated hyaluronic acid (HA) hydrogels crosslinked by divinyl sulfone (DVS) were studied by differential scanning calorimetry (DSC), dielectric relaxation spectroscopy (DRS) and water sorption—desorption (ESI) measurements. A critical water fraction of about hw = 0.17 (g of water per g of hydrated HA) for a change in the hydration properties of the material was estimated. Water crystallization was recorded by DSC during cooling and heating for water fraction values hw ≥ 0.31. The glass transition of the hydrated system was recorded in the water fraction region 0.06 ≤ hw ≤ 0.59. The Tg was found to decrease with increasing hydration level, starting from Tg = −48 °C down to about Tg = −80 °C and then to stabilize there, for the hydration levels where water crystallization occurs, suggesting that the origin of the glass transition is the combined motion of uncrystallized water molecules attached to primary hydration sites and segments of the HA chains. DRS studies revealed two relaxation peaks, associated with the main secondary relaxation process of uncrystallized water molecules (UCW) triggering the mobility of polar groups and the segmental mobility of HA chains (α relaxation). The α relaxation was in good agreement with the results by DSC. A qualitative change in the dynamics of the α relaxation was found for hw = 0.23 and was attributed to a reorganization of water in the material due to structural changes. Finally, the dielectric strength of the relaxation of UCW was found to decrease in the water fraction region of the structural changes, i.e. for hw ~ 0.23.

Keywords

Molecular mobility Hydrated hyaluronic acid Hydrogel Uncrystallized water Dielectric relaxation Glass transition 

References

  1. 1.
    T.C. Laurent, Ciba Foundation Symposium, vol. 143 (John Wiley and Sons, New York, 1989), pp. 1–298Google Scholar
  2. 2.
    J. Necas, L. Bartosikov, P. Brauner, J. Kolar, Vet. Med. 53(8), 397–411 (2008)Google Scholar
  3. 3.
    M.K. Cowman, M. Li, E.A. Balazs, Biophys. J. 75, 2030–2037 (1998)CrossRefGoogle Scholar
  4. 4.
    M.K. Cowman, S. Matsuoka, Carbohydr. Res. 340, 791–809 (2005)CrossRefGoogle Scholar
  5. 5.
    C.E. Schanté, G. Zuber, C. Herlin, T.F. Vendamme, Carbohydr. Polym. 85, 469–489 (2011)CrossRefGoogle Scholar
  6. 6.
    E.J. Oh, K. Park, K.S. Kim, J. Kim, J.-A. Yang, J.-H. Kong, M.Y. Lee, A.S. Hoffman, S.K. Hahn, J. Control. Release 141, 2–12 (2010)CrossRefGoogle Scholar
  7. 7.
    A.S. Hoffman, Adv. Drug Deliv. Rev. 54, 3–12 (2002)CrossRefGoogle Scholar
  8. 8.
    F. Lee, M. Kurisawa, Acta Biomaterialia 9(2), 5143–5152 (2013)Google Scholar
  9. 9.
    H.N. Joshi, E.M. Topp, Int. J. Pharm. 80, 213–225 (1992)CrossRefGoogle Scholar
  10. 10.
    J. Kucerik, A. Prusova, A. Rotaru, K. Flimel, J. Janecek, P. Conte, Thermochim. Acta 523, 245–249 (2011)CrossRefGoogle Scholar
  11. 11.
    M.N. Collins, C. Birkinshaw, J. Mater. Sci. Mater. Med. 19, 3335–3343 (2008)CrossRefGoogle Scholar
  12. 12.
    R. Servaty, J. Schiller, H. Binder, K. Arnold, Int. J. Biol. Macromol. 28, 121–127 (2001)CrossRefGoogle Scholar
  13. 13.
    J. Kaufmann, K. Möhle, H.J. Hofmann, K. Arnold, J. Mol. Struct. (THEOCHEM) 422, 109–121 (1998)CrossRefGoogle Scholar
  14. 14.
    H. Sugimoto, T. Miki, K. Κanayama, M. Norimoto, J. Non-Cryst. Solids 354, 3220–3224 (2008)CrossRefGoogle Scholar
  15. 15.
    J. Mijović, Y. Bian, R.A. Gross, B. Chen, Macromolecules 38, 10812–10819 (2005)CrossRefGoogle Scholar
  16. 16.
    J. Swenson, H. Jansson, J. Hedström, R. Bergman, J. Phys. Condens. Matter 19, 205109–205117 (2007)CrossRefGoogle Scholar
  17. 17.
    C. Gainaru, A. Fillmer, R. Böhmer, J. Phys. Chem. B 113, 12628–12631 (2009)CrossRefGoogle Scholar
  18. 18.
    W. Doster, S. Busch, A.M. Gaspar, M.S. Appavu, J. Wuttke, H. Scheer, Phys. Rev. Lett. 104, 098101–098104 (2010)CrossRefGoogle Scholar
  19. 19.
    A. Panagopoulou, A. Kyritsis, N. Shinyashiki, P. Pissis, J. Phys. Chem. B 116, 4593–4602 (2012)CrossRefGoogle Scholar
  20. 20.
    P. Pissis, A. Kyritsis, J. Polym. Sci. B Polym. Phys. 51(3), 159–175 (2013)CrossRefGoogle Scholar
  21. 21.
    G. Careri, Prog. Biophys. Mol. Biol. 70, 223–249 (1998)CrossRefGoogle Scholar
  22. 22.
    S. Cerveny, A. Alegria, J. Colmenero, Phys. Rev. E 77, 031803–031807 (2008)CrossRefGoogle Scholar
  23. 23.
    K.L. Ngai, S. Capaccioli, S. Ancherbak, N. Shinyashiki, Phil. Mag. 91, 1809–1835 (2011)CrossRefGoogle Scholar
  24. 24.
    A. Panagopoulou, A. Kyritsis, A.M. Aravantinou, D. Nanopoulos, R. Sabater i Serra, J.L. Gómez Ribellez, N. Shinyashiki, P. Pissis, Food Biophys. 6, 199–209 (2011)CrossRefGoogle Scholar
  25. 25.
    A. Panagopoulou, A. Kyritsis, R. Sabater i Serra, J.L. Gómez Ribellez, N. Shinyashiki, P. Pissis, Biochim. Biophys. Acta 1814, 1984–1996 (2011)CrossRefGoogle Scholar
  26. 26.
    R.B. Gregory, Protein-Solvent Interactions (Marcel Dekker, New York, USA, 1995)Google Scholar
  27. 27.
    D. Ringe, G.A. Petsko, Biophys. Chem. 105, 667–680 (2003)CrossRefGoogle Scholar
  28. 28.
    P.W. Fenimore, H. Frauenfelder, B.H. McMahon, R.D. Young, Proc. Natl. Acad. Sci. 101, 14408–14413 (2004)CrossRefGoogle Scholar
  29. 29.
    Y. Miyazaki, T. Matsuo, H. Suga, J. Phys. Chem. B 104, 8044–8052 (2000)CrossRefGoogle Scholar
  30. 30.
    N. Shinyashiki, W. Yamamoto, A. Yokoyama, T. Yoshinari, S. Yagihara, K.L. Ngai, S. Capaccioli, J. Phys. Chem. B 113, 14448–14456 (2009)CrossRefGoogle Scholar
  31. 31.
    S. Khodadadi, A. Malkovskiy, A. Kisliuk, A.P. Sokolov, Biochim. Biophys. Acta 1804, 15–19 (2010)CrossRefGoogle Scholar
  32. 32.
    H. Jansson, J. Swenson, Biochim. Biophys. Acta 1804, 20–26 (2010)CrossRefGoogle Scholar
  33. 33.
    A.L. Tournier, J. Xu, J.C. Smith, Biophys. J. 85, 1871–1875 (2003)CrossRefGoogle Scholar
  34. 34.
    D. Porter, F. Vollrath, Biochim. Biophys. Acta 1824, 785–791 (2012)CrossRefGoogle Scholar
  35. 35.
    T. Vuletić, S. Dolanski Babić, T. Ivek, D. Grgičin, S. Tomić, Phys. Rev. E 82, 011922–011932 (2010)CrossRefGoogle Scholar
  36. 36.
    L. Greenspan, Humidity fixed points of binary saturated aqueous solutions. J. Res. Nat. Bur. Stand. A Phys. Chem. 81A, 89–96 (1977)CrossRefGoogle Scholar
  37. 37.
    F. Kremer, A. Schönhals (eds.), Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)Google Scholar
  38. 38.
    R.H. Cole, K.S. Cole, J. Chem. Phys. 10, 98–105 (1942)CrossRefGoogle Scholar
  39. 39.
    R.P. Chartoff, P.T. Weissman, A. Sirkar, in The Application of Dynamic Mechanical Methods to T g Determination in polymers: An overview, Assignment of the Glass Transition, ASTM STP 1249, ed. by R.J. Seyler (American Society for Testing and Materials, Philadelphia, 1994), pp. 88–107Google Scholar
  40. 40.
    H. Vogel, Phys. Z. 22, 645–646 (1921)Google Scholar
  41. 41.
    A. Anagnostopoulou-Konsta, P. Pissis, J. Phys. D. Appl. Phys. 20, 1168–1174 (1987)CrossRefGoogle Scholar
  42. 42.
    D. Daoukaki-Diamanti, P. Pissis, G. Boudouris, Chem. Phys. 91, 315–325 (1984)CrossRefGoogle Scholar
  43. 43.
    P. Pissis, J. Phys. D. Appl. Phys. 18, 1897–1908 (1985)CrossRefGoogle Scholar
  44. 44.
    S. Ratkovic, P. Pissis, J. Mater. Sci. 32, 3061–3068 (1997)CrossRefGoogle Scholar
  45. 45.
    P. Pissis, J. Exp. Bot 41, 677–684 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Anna Panagopoulou
    • 1
  • Joan Vázquez Molina
    • 2
  • Apostolos Kyritsis
    • 1
  • Manuel Monleón Pradas
    • 2
    • 3
  • Anna Vallés Lluch
    • 2
  • Gloria Gallego Ferrer
    • 2
    • 3
  • Polycarpos Pissis
    • 1
  1. 1.Department of PhysicsNational Technical University of AthensAthensGreece
  2. 2.Center for Biomaterials and Tissue EngineeringUniversitat Politècnica de ValènciaValenciaSpain
  3. 3.CIBER en BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)ValenciaSpain

Personalised recommendations