Skip to main content
Log in

Analysis of Bulk and Hydration Water During Thermal Lysozyme Denaturation Using Raman Scattering

  • SPECIAL ISSUE ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

We describe a method for analyzing protein hydration by Raman spectroscopy on the model protein lysozyme. The analysis of the protein hydration shell is made possible by dissolving the protein in D2O, providing via isotopic exchange the uncoupled O – H stretching spectrum of water molecules early bound to the protein, which are thereafter spread into the solvent. The spectrum of the hydration water can be obtained by subtracting the spectrum of the contribution of D2O from that of the aqueous lysozyme solution in the intramolecular O – D stretching vibrations region (2,200–2,800 cm−1). Raman investigations were simultaneously carried out in the amide I region (1,500–1,800 cm−1) and in the O – D/H stretching spectrum (3,200–3,800 cm−1) during thermal denaturation of lysozyme, to analyze structural changes of the protein in relation to the physical properties of hydration water. It was found that the H-bond network of hydration water is slightly distorted compared to the bulk water at room temperature, with a loss of the tetrahedral local order. The difference between hydration and bulk water is significantly enhanced at T = 90 °C in the denaturated state of the protein. The quantification of water molecules in direct interaction with the protein provides the temperature dependence of the solvent-accessible surface area during the denaturation process. Both kinds of information on hydration water and protein structure lead to a detailed description and overall understanding of the mechanism of protein denaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Kauzmann, Adv. Protein Chem. 14, 1 (1959)

    Article  CAS  Google Scholar 

  2. G. Careri, Collective Effects in Hydrated Proteins, in Hydration Processes in Biology: Theoretical and Experimental Approaches, ed. by M.-C. Bellissent-Funel (Ios Press, Amsterdam, 1999)

    Google Scholar 

  3. S. Dellerue, M.-C. Bellissent-Funel, Chem. Phys. 258, 315 (2000)

    Article  CAS  Google Scholar 

  4. M. Tarek, D.J. Tobias, Biophys. J. 79, 3244 (2000)

    Article  CAS  Google Scholar 

  5. K. Modig, E. Liepinsh, G. Otting, B.J. Halle, Am. Chem. Soc. 126, 102 (2004)

    Article  CAS  Google Scholar 

  6. C. Mattea, J. Qvist, B. Halle, Biophys. J. 95, 2951 (2008)

    Article  CAS  Google Scholar 

  7. D.I. Svergun, S. Richard, M.H.J. Koch, Z. Sayers, S. Kuprin, G. Zaccai, Proc. Natl. Acad. Sci. USA 95, 2267 (1998)

    Article  CAS  Google Scholar 

  8. N.Q. Vinh, S.J. Allen, K.W.J. Plaxco, Am. Chem. Soc. 133, 8942 (2011)

    Article  CAS  Google Scholar 

  9. C. Schroder, T. Rudas, S. Boresch, O.J. Steinhauser, Chem. Phys. 124, 234907 (2006)

    CAS  Google Scholar 

  10. A. Oleinikova, N. Smolin, I. Brovchenko, Biophys. J. 93, 2986 (2007)

    Article  CAS  Google Scholar 

  11. A.R. Bizzari, S. Cannistraro, Phys. Rev. E 53, R3040 (1996)

    Article  Google Scholar 

  12. F.M. Richards, Ann. Rev. Biophys. Bioeng. 6, 151 (1977)

    Article  CAS  Google Scholar 

  13. C. Bon, A.J. Dianoux, M. Ferrand, M.S. Lehmann, Biophys. J. 83, 1578 (2002)

    Article  CAS  Google Scholar 

  14. M.-C.J. Bellissent-Funel, Mol. Liq. 84, 39 (2000)

    Article  CAS  Google Scholar 

  15. B. Bagchi, Chem. Rev. 105, 3197 (2005)

    Article  CAS  Google Scholar 

  16. S.N. Timasheff, PNAS 99, 9721–9726 (2002)

    Article  CAS  Google Scholar 

  17. T. Arakawa, S.N. Timasheff, Biochemistry 21, 6536–6544 (1982)

    Article  CAS  Google Scholar 

  18. R.W. Williams, A.K.J. Dunker, Mol. Biol. 152, 783 (1981)

    Article  CAS  Google Scholar 

  19. W.K. Surewicz, H.H. Mantsch, D. Chapman, Biochemistry 32, 389 (1993)

    Article  CAS  Google Scholar 

  20. R. Ionov, A. Hédoux, Y. Guinet, P. Bordat, A. Lerbret, F. Affouard, D. Prevost, M. Descamps, J. Non-Cryst. Solids. 2006.

  21. A. Hédoux, Y. Guinet, L.J. Paccou, Phys. Chem. B 115, 6740 (2011)

    Article  Google Scholar 

  22. A. Hedoux, J.F. Willart, L. Paccou, Y. Guinet, F. Affouard, A. Lerbret, M.J. Descamps, Phys. Chem. B 113, 6119 (2009)

    Article  CAS  Google Scholar 

  23. A. Hédoux, R. Ionov, J.F. Willart, A. Lerbret, F. Affouard, Y. Guinet, M. Descamps, D. Prevost, L. Paccou, F. Danède, J. Chem. Phys. 124, 14703 (2006)

    Article  Google Scholar 

  24. J.-A. Seo, A. Hedoux, Y. Guinet, L. Paccou, F. Affouard, A. Lerbret, M. Descamps, J. Phys. Chem. B114, 6675 (2010)

    Google Scholar 

  25. P. Sassi, G. Onori, A. Giugliarelli, M. Paolantoni, S. Cinelli, A.J. Morresi, Mol. Liq. 159, 112 (2011)

    Article  CAS  Google Scholar 

  26. L. Fu, S. Villette, S. Petoud, F. Fernandez-Alonzo, M.-L.J. Saboungi, Phys. Chem. B 115, 1881 (2011)

    Article  CAS  Google Scholar 

  27. A. Hédoux, S. Krenzlin, L. Paccou, Y. Guinet, M.P. Flament, J. Siepmann, Phys. Chem. Chem. Phys. 12, 13189 (2010)

    Article  Google Scholar 

  28. A. Lerbret, P. Bordat, F. Affouard, Y. Guinet, A. Hedoux, L. Paccou, D. Prevost, M. Descamps, Carbohydr. Res. 340, 881 (2005)

    Article  CAS  Google Scholar 

  29. G. D’Arrigo, G. Maisano, F. Mallamace, P. Migliardo, F.J. Wanderlingh, Chem. Phys. 75, 4264 (1981)

    Google Scholar 

  30. G.E.J. Walrafen, Chem. Phys. 47, 114 (1967)

    CAS  Google Scholar 

  31. J.R. Scherer, M.K. Go, S.J. Kint, Phys. Chem. 78, 1304 (1974)

    Article  CAS  Google Scholar 

  32. T.T. Wall, D.F.J. Hornig, Chem. Phys. 43, 2079 (1965)

    CAS  Google Scholar 

  33. W.F. Murphy, H.J.J. Bernstein, Phys. Chem. 76, 1147 (1972)

    Article  CAS  Google Scholar 

  34. A. Hedoux, F. Affouard, M. Descamps, Y. Guinet, L. Paccou, Phys.: Condens. Matter 19 (2007). 8 p

    Google Scholar 

  35. K. Kuwajima, Proteins 6, 87 (1989)

    Article  CAS  Google Scholar 

  36. J. Baum, C.M. Dobson, P.A. Evans, C. Hanley, Biochemistry 28, 7 (1989)

    Article  CAS  Google Scholar 

  37. K. Masaki, R. Masuda, K. Takase, K. Kawano, K. Nitta, Protein Eng. 13, 1 (2000)

    Article  CAS  Google Scholar 

  38. P.L.J. Privalov, Mol. Biol. 258, 707 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the ANR (Agence Nationale de la Recherche) through the BIOSTAB project (“Physique Chimie du Vivant” program), by FEDER and Nord-Pas de Calais region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Bellavia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellavia, G., Paccou, L., Achir, S. et al. Analysis of Bulk and Hydration Water During Thermal Lysozyme Denaturation Using Raman Scattering. Food Biophysics 8, 170–176 (2013). https://doi.org/10.1007/s11483-013-9294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-013-9294-3

Keywords

Navigation