Skip to main content
Log in

Visible Spectral Linearisation, Gradient Shift and Normalisation in Quantifying Carambola Acidity

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Color alteration is one of the major indicators of the maturity and level of ripeness of fruits. A strong relationship also exists between the color and acidity of fruits. Three different spectral analyses have been conducted in the visible region of the measured spectrum to quantify the acidity or pH of B10 carambola. Spectral linearisation, gradient shift, and normalisation analyses within the wavelength range of 550 and 675 nm have been applied on the spectra of intact carambola samples. These two wavelength points are selected because of their best response and strong link to carotenoid and chlorophyll contents in carambola. The spectra are measured through reflectance and interactance measurement techniques. High coefficients of determination (R2 >0.7) generated for all analyses indicate that a strong relationship exists between the presented color analyses and the acidity of the carambolas. Interactance has a better accuracy and precision in measuring the carambola acidity compared with the reflectance technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Gross, Pigments in fruits (London Academic Press, U.K., 1987)

    Google Scholar 

  2. G. Mazza, E. Miniati, Anthocyanins in fruits, vegetables and grains (CRC Press, Boca Raton, 1993)

    Google Scholar 

  3. K Esau, Fleshy Fruit Wall, Plant Anatomy. (Wiley Eastern Private Limited, 1972), p. 595–603

  4. M. Dauthy, Chapter 8: fruit specific preservation technologies, fruit and vegetable processing. (FAO Agricultureal Services Bulletin, 119. Food and Agricultural Organization of the United Nations, 1995), http://www.fao.org/docrep/V5030E/V5030E0i.htm Retrieved on: 21.11.2009

  5. M.Z. Abdullah, J. Mohamad-Saleh, A.S. Fathinul-Syahir, B.M.N. Mohd-Azemi, Discrimination and classification of fresh-cut starfruits (Averrhoa carambola L.) using automated machine vision system. J. Food Eng. 76, 506–523 (2006)

    Article  Google Scholar 

  6. F.J. Mitcham, R.E. McDonald, Characterization of the ripening of carambola (Averrhoa carambola L.) fruit. Proceedings Florida State Horticulture. Society 104, 104–108 (1991)

    Google Scholar 

  7. H.Y. Nakasone, R.R. Paull, Tropical Fruits (CAB International, Wallingford, 1998)

    Google Scholar 

  8. I. Iglesias, G. Echeverria, Y. Soria, Differences in fruit colour development, anthocyanin content, fruit quality and consumer acceptability of eight ‘Gala’ apple strains. Sci. Hortic. 119, 32–40 (2008)

    Article  CAS  Google Scholar 

  9. R.M. Crassweller, R.A. Hollender, Consumer evaluations of ‘Delicious’ apple strains. Fruit Varieties J. 43(4), 139–142 (1989)

    Google Scholar 

  10. T.A. Baugher, H.W. Hogmire, T. Lightner, Deternubing apple packout losses and impact of profitability. Appl. Agric. Res. 5, 23–26 (1990)

    Google Scholar 

  11. M.E. Salveit, Relationship between ethylene production and taste panel preference of ‘Starkrimson Red Delicious’ apples. Can. J. Plant Sci. 63, 303–306 (1983)

    Article  Google Scholar 

  12. H. MacFie, Consumer preference and sensory studies on southern and northern hemisphere dessert apples. Eur. Apple 3, 12–13 (1995)

    Google Scholar 

  13. R Harker, Consumer Response to Apples. in Proceedings of the Washington Tree Fruit Postharvest Conference, WSU-TFREC Postharvest Information Network, 2001

  14. F. Donati, A. Gianini, S. Sansavini, W. Guerra, R. Stainer, S. Pellegrino, Valutazioni qualitative sensoriali di nuove mele di diversa provenienza. Riv. di Frutticoltu. e di Ortofloricol. 65(5), 65–71 (2003)

    Google Scholar 

  15. F. Liu, Y. He, L. Wang, H. Pan, Feasibility of the use of visible and near infrared spectroscopy to assess soluble solids content and pH of rice wines. J. Food Eng. 83, 430–435 (2007)

    Article  CAS  Google Scholar 

  16. Y. Shao, Y. He, S. Feng, Measurement of yogurt internal quality through using Vis/NIR spectroscopy. Food Res. Int. 40, 835–841 (2007)

    Article  CAS  Google Scholar 

  17. V. Gonzalez-Caballero, M.T. Sanchez, M.I. Lopez, D. Perez-Marín, First steps towards the development of a non-destructive technique for the quality control of wine grapes during on-vine ripening and on arrival at the winery. J. Food Eng. 101, 158–165 (2010)

    Article  CAS  Google Scholar 

  18. H. Buning-Pfaue, Analysis of water in food by near infrared spectroscopy. Food Chem. 82, 107–115 (2003)

    Article  CAS  Google Scholar 

  19. J. Herrera, A. Guesalaga, E. Agosin, Shortwave-near infrared spectroscopy for non-destructive determination of maturity of wine grapes. Meas. Sci. Technol. 14, 689–697 (2003)

    Article  CAS  Google Scholar 

  20. K. Suehara, T. Yano, Bioprocess monitoring using near-infrared spectroscopy. Adv. Biochem. Eng. Biotechnol. 90, 173–198 (2004)

    CAS  Google Scholar 

  21. P.E. Zerbini, Emerging technologies for non-destructive quality evaluation of fruit. J. Fruit Ornam. Plant Res. 14(Suppl. 2), 13–23 (2006)

    Google Scholar 

  22. FAMA, Spesifikasi gred dan piawaian (2008), http://www.fama.gov.my/html/themes/fama/images/fama/content/Belimbing1.pdf Retrieved on: 07.12.2011

  23. C.S. French, J.S. Brown, M.C. Lawrence, Four Universal Forms of Chlorophyll a. Plant Physiol. 49(3), 421–429 (1972)

    Article  CAS  Google Scholar 

  24. A.H. Gomez, Y. He, A.G. Pereira, Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR spectroscopy techniques. J. Food Eng. 77, 313–319 (2006)

    Article  CAS  Google Scholar 

  25. S. Kawano, T. Fujiwara, M. Iwamoto, Nondestructive determination of sugar content in Satsuma mandarin using near infrared (NIR) transmittance. J. Japan. Soc. Hort. Sci. 62(2), 465–470 (1993)

    Article  CAS  Google Scholar 

  26. F. Cao, D. Wu, Y. He, Soluble solids content and pH prediction and varieties discrimination of grapes based on visible-near infrared spectroscopy. Comput. Electron. Agric. 71S, S15–S18 (2010)

    Article  Google Scholar 

  27. A.F. Omar, M.Z. MatJafri, Analysis of NIR spectral reflectance linearization and gradient shift in monitoring apple and pear decay. Asian J. Food Agro Technol. 1(04), 223–231 (2008)

    Google Scholar 

  28. A.F. Omar, H. Atan, M.Z. MatJafri, Application of nir spectral absorbance linearization and gradient shift in quantifying aqueous glucose and fructose solutions. Asian J. Chem. 23(7), 3066–3070 (2011)

    CAS  Google Scholar 

  29. M. Sambongi, M. Igarashi, T. Obi, M. Yamaguchi, N. Ohyama, M. Kobayashi, Y. Sano, S. Yoshida, K. Gono, Analysis of spectral reflectance using normalization method from endoscopic spectroscopy system. Opt. Rev. 9(6), 238–243 (2002)

    Article  Google Scholar 

  30. Apogee Instruments, Chlorophyll concentration meter tech info: how the meter works (2009), http://www.apogee-inst.com/CCM_techinfo.htm Retrieved on: 03.11.2011

Download references

Acknowledgments

This project is sponsored by Universiti Sains Malaysia Research University Grant (Grant no. 1001/PFIZIK/811153) and Research University Postgraduate Research Grant Scheme (Grant No. 1001/PJJAUH/843028). The B10 carambola samples were donated by Federal Agricultural Marketing Authority (FAMA) Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Fairuz Omar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omar, A.F., Atan, H. & MatJafri, M.Z. Visible Spectral Linearisation, Gradient Shift and Normalisation in Quantifying Carambola Acidity. Food Biophysics 7, 289–295 (2012). https://doi.org/10.1007/s11483-012-9267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-012-9267-y

Keyword

Navigation