Cooking Literacy: Meringues as Culinary Scaffoldings

Abstract

As simple as some baking recipes may seem, it is imperative for the cook to realize that baking is a complex phenomenon where scientific insight may provide a significant benefit. At the same time, scientists have to embrace the notion that cooking and baking are deemed of serious and systematic investigation—as they continue to be clouded with plenty of culinary mysticism. With this contribution, we aim to offer an example as to support these statements. Egg white proteins are the main structural components of meringues and as such, their chemistry and the way they behave during whipping in the presence of sugar(s), acid(s) and cations, notwithstanding the effect of the age of egg-whites and their whipping temperature, will affect the quality of the foams produced and ultimately of the dish they form a part of. We critically review the available and relevant body of knowledge around the biophysics and chemistry of culinary egg white-based foams. In doing so, we also propose a series of experiments that will help elucidate the mechanism(s) by which copper and cream of tartar stabilize egg white foams.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    E.L. Smith, in But the Crackling is Superb—An Anthology on Food and Drink by Fellows and Foreign Members of The Royal Society, ed. by N. Kurti, G. Kurti (Institute of Physics Publishing, London, 1988)

    Google Scholar 

  2. 2.

    M. Ruhlman, Ratio—The Simple Codes Behind the Craft of Everyday Cooking (Scribner, New York, 2009)

    Google Scholar 

  3. 3.

    P. Reinhart, The Bread Baker’s Apprentice—Mastering the Art of Extraordinary Bread (Ten Speed Press, New York, 2001)

    Google Scholar 

  4. 4.

    P. Figoni, How Baking Works, 3rd edn. (Wiley, New Jersey, 2011)

    Google Scholar 

  5. 5.

    S. Corriher, Bakewise: The Hows and Whys of Successful Baking with Over 200 Magnificent Recipes (Simon & Schuster, New York, 2008)

    Google Scholar 

  6. 6.

    H. McGee, On Food and Cooking—The Science and Lore of the Kitchen (Scribner, New York, 2004)

    Google Scholar 

  7. 7.

    S. Corriher, Cookwise—The Hows and Whys of Successful Cooking (HarperCollins, New York, 1997)

    Google Scholar 

  8. 8.

    H. Blumenthal, Further Adventures in Search of Perfection—Reinventing Kitchen Classics (Bloomsbury, London, 2007)

    Google Scholar 

  9. 9.

    H. McGee, Keys to Good Cooking: A Guide to Making the Best of Foods and Recipes (The Penguin Press, New York, 2010)

    Google Scholar 

  10. 10.

    M. Parloa, Miss Parloa’s New Cookbook: A Guide to Marketing and Cooking (C.T. Dillingham, New York, 1880)

    Google Scholar 

  11. 11.

    C.W. Pernell et al., Heat-induced changes in angel food cakes containing egg-white protein or whey protein isolate. J. Food Sci. 67(8), 2945–2951 (2002)

    Article  CAS  Google Scholar 

  12. 12.

    A.E. Foegeding, P.J. Luck, J.P. Davis, Factors determining the physical properties of protein foams. Food Hydrocolloids 20(284–292), 284 (2006)

    Article  CAS  Google Scholar 

  13. 13.

    M.A. Barmore, The influence of chemical and physical factors of egg-white foams, in Technical Bulletin No. 9. (Fort Collins, 1934)

  14. 14.

    J.M. Rodriguez Patino, M. Dolores Naranjo Delgado, J. Linares Fernandez, Stability and mechanical strength of aqueous foams containing food proteins. Colloids Surf., A Physicochem. Eng. Asp. 99(1), 65–78 (1995)

    Article  CAS  Google Scholar 

  15. 15.

    C.K. Lau, E. Dickinson, Instability and structural change in an aerated system containing egg albumen and invert sugar. Food Hydrocolloids 19(1), 111–121 (2005)

    Article  CAS  Google Scholar 

  16. 16.

    O.R. Fennema (ed.), Food Chemistry (CRC Press, Taylor and Francis group, Florida, 1996)

    Google Scholar 

  17. 17.

    Y. Mine, Recent advances in the understanding of egg white protein functionality. Trends Food Sci. Technol. 6, 225–236 (1995)

    Article  CAS  Google Scholar 

  18. 18.

    D. Langevin, Aqueous foams: a field of investigation at the frontier between chemistry and physics. ChemPhysChem 9, 510–522 (2008)

    Article  CAS  Google Scholar 

  19. 19.

    A. Saint-James, Physical chemistry in foam drainage and coarsening. Soft Matter 2, 836–849 (2006)

    Article  Google Scholar 

  20. 20.

    P. Walstra, Physical Chemistry of Foods (Marcel Dekker, New York, 2003)

    Google Scholar 

  21. 21.

    B. Lowe, Experimental Cookery—From the Chemical and Physical Standpoint, 3rd edn. (Wiley, New York, 1943)

    Google Scholar 

  22. 22.

    X. Yang, T.K. Berry, A.E. Foegeding, Foams prepared from whey protein isolate and egg white protein: 1. Physical, microstructural, and interfacial properties. J. Food Sci. 74(5), E259–E268 (2009)

    Article  CAS  Google Scholar 

  23. 23.

    P.J. Luck, N. Bray, A.E. Foegeding, Factors determining yield stress and overrun of whey protein foams. J. Food Sci. 67(5), 1677–1681 (2001)

    Article  Google Scholar 

  24. 24.

    Y. Mine, T. Noutomi, N. Haga, Thermally induced changes in egg white proteins. J. Agric. Food Chem. 38, 2122–2125 (1990)

    Article  CAS  Google Scholar 

  25. 25.

    T.M. Johnson, M.E. Zabik, Egg Albumen proteins interactions in an angel food cake system. J. Food Sci. 46, 1231–1236 (1981)

    Article  CAS  Google Scholar 

  26. 26.

    L.M.C. Sagis et al., Effect of copper ions on the drainage stability of foams prepared from egg white. Colloids Surf., A Physicochem. Eng. Asp. 180(1–2), 163–172 (2001)

    Article  CAS  Google Scholar 

  27. 27.

    Y. Mine, Recent advances in egg protein functionality in the food system. World’s Poultry Sci. J. 58, 31–39 (2002)

    Article  Google Scholar 

  28. 28.

    H.J. McGee, S.R. Long, W.R. Briggs, Why whip egg whites in copper bowls? Nature 308, 667–668 (1984)

    Article  CAS  Google Scholar 

  29. 29.

    L.R. MacDonnell et al., The functional properties of the egg white proteins. Food Technol. 9, 49–53 (1955)

    CAS  Google Scholar 

  30. 30.

    B.R. Min et al., Effect of irradiating shell eggs on quality attributes and functional properties of yolk and white. Poult. Sci. 84, 1791–1796 (2005)

    CAS  Google Scholar 

  31. 31.

    J.F. Zayas, Functionality of Proteins in food (Springer, New York, 1997)

    Google Scholar 

  32. 32.

    S. Damodaran, A. Paraf. (eds.), Food Proteins and their Applications. (Marcel Dekker, Inc., New York, 1997)

  33. 33.

    H.D. Belitz, W. Grosch, P. Schieberle (eds.), Food Chemistry, 4th edn. (Springer, 2009)

  34. 34.

    F.E. Cunningham, Properties of egg white foam drainage. Poult. Sci. 55, 738–743 (1976)

    Article  CAS  Google Scholar 

  35. 35.

    K. Lomakina, K. Míková, A study of the factors affecting the foaming properties of egg white—a review. Czech J. Food Sci. 24(3), 110–118 (2006)

    CAS  Google Scholar 

  36. 36.

    H. This, Molecular Gastronomy—Exploring the Science of Flavor (Columbia University Press, New York, 2006)

    Google Scholar 

  37. 37.

    P. Wierenga, et al. Variations in meringues. In Proceedings of the Euro Food Chem XIV. (Paris, France, 2007)

  38. 38.

    L.W. Hunt, J.L. St. John, Angel food cake form the thick and thin portions of egg white. J. Home Econ. 23, 1151–1156 (1931)

    Google Scholar 

  39. 39.

    W.E. Pyke, G. Johnson, Relationships between certain physical measurements upon fresh and stored eggs and their behavior in the preparation and baking of cake. (Poultry Science, 1941) pp. 125–138

  40. 40.

    I.M. Bailey, Foaming of egg white. Ind. Eng. Chem. 27(8), 973–976 (1935)

    Article  CAS  Google Scholar 

  41. 41.

    M.A. Barmore, The influence of various factors, including altitude, in the production of angel food cake. Technical Bulletin No. 15 (1936)

  42. 42.

    E.L. Miller, G.E. Vail, Angel food cakes made from fresh and frozen egg whites. Cereal Chem. 20, 528–535 (1943)

    CAS  Google Scholar 

  43. 43.

    A. Kamozawa, A. Talbot, Ideas in Food: Great Recipes and Why They Work (Clarkson Potter, New York, 2010)

    Google Scholar 

  44. 44.

    G. Wang, T. Wang, Effects of yolk contamination, shearing, and heating on foaming properties of fresh egg white. J. Food Sci. 74(2), C147–C156 (2009)

    Article  CAS  Google Scholar 

  45. 45.

    G.A. van Aken, Aeration of emulsions by whipping. Colloids Surf., A Physicochem. Eng. Asp. 190(3), 334–354 (2001)

    Google Scholar 

  46. 46.

    V. Lechevalier et al., Ovalbumin, ovotransferrin, lysozyme: three model proteins for structural modifications at the air-water interface. J. Agric. Food Chem. 51(21), 6354–6361 (2003)

    Article  CAS  Google Scholar 

  47. 47.

    A.M. Oldham, D.R. McComber, D.F. Cox, Effect of cream of tartar level and egg white temperature on angel food cake quality. Fam. Consum. Sci. Res. J. 29(2), 111–124 (2000)

    Article  Google Scholar 

  48. 48.

    I. Van der Plancken, A. Van Loey, M.E. Hendrickx, Foaming properties of egg white proteins affected by heat or high pressure treatment. J. Food Eng. 78, 1410–1426 (2007)

    Article  Google Scholar 

  49. 49.

    I. Van der Plancken, A. Van Loey, M.E.G. Hendrickx, Changes in sulfhydryl content of egg white proteins due to heat and pressure treatment. J. Agric. Food Chem. 53, 5726–5733 (2005)

    Article  Google Scholar 

  50. 50.

    I. Van der Plancken, A. Van Loey, M.E.G. Hendrickx, Effect of moisture content during dry-heating on selected physicochemical and functional properties of dried egg white. J. Agric. Food Chem. 55, 127–135 (2007)

    Article  Google Scholar 

  51. 51.

    L. Campbell, V. Raikos, S.R. Euston, Modification of functional properties of egg-white proteins. Die Nahrung 47, 369–376 (2003)

    Article  CAS  Google Scholar 

  52. 52.

    W.J. Stadelman, O.J. Cotterill (eds.), Egg Science and Technology, 4th edn. (The Haworth Press Inc., New York, 1994)

    Google Scholar 

  53. 53.

    T.K. Berry, X. Yang, A.E. Foegeding, Foams prepared from whey protein isolate and egg white protein: 2. Changes associated with angel food cake functionality. J. Food Sci. 74(5), E269–E277 (2009)

    Article  CAS  Google Scholar 

  54. 54.

    T. Arakawa, S.N. Timasheff, Stabilization of protein structure by sugars. Biochemistry 21(25), 6536–6544 (1982)

    Article  CAS  Google Scholar 

  55. 55.

    P.J. Luck, A.E. Foegeding, The role of copper in protein foams. Food Biophys. 3, 255–260 (2008)

    Article  Google Scholar 

  56. 56.

    O.J. Cotterill, et al., Metallic cations affect functional performance of spray-dried heat-treated egg white. J. Food Sci. 57(6) (1992)

  57. 57.

    F.J. Monahan, J.B. German, J.E. Kinsella, Effect of pH and temperature on protein unfolding and thiol/disulfide interchange reactions during heat-induced gelation of whey proteins. J. Agric. Food Chem. 43, 46–52 (1995)

    Article  CAS  Google Scholar 

  58. 58.

    N. Myrhvold, C. Young, M. Bilet, Modernist Cuisine: The Art and Science of Cooking (The Cooking Lab, Seattle, 2011)

    Google Scholar 

  59. 59.

    Available from: http://allrecipes.com/

  60. 60.

    A. Brown, Available from: http://www.foodnetwork.com/recipes/alton-brown/angel-food-cake-recipe/index.html

  61. 61.

    Available from: http://www.joyofbaking.com/printpages/AngelFoodCakeprint.html

  62. 62.

    D. Allen, Darina Allen’s Ballymaloe Cookery Course (London: Ted Smart Publishers, 2005)

  63. 63.

    Available from: http://www.epicurious.com/

Download references

Acknowledgements

We appreciate the critical comments from Dr. Johannes Schlebusch and Andy Johnston during the preparation of this manuscript and the insightful comments from the reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to César Vega.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vega, C., Sanghvi, A. Cooking Literacy: Meringues as Culinary Scaffoldings. Food Biophysics 7, 103–113 (2012). https://doi.org/10.1007/s11483-011-9247-7

Download citation

Keywords

  • Meringues
  • Egg white
  • Foams
  • Gastronomy
  • Science-based cooking