Skip to main content
Log in

Solubility and Stability of β-Cyclodextrin–Terpineol Inclusion Complex as Affected by Water

  • SPECIAL ISSUE ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

In the present work, inclusion complexes of α-terpineol (Terp) and β-cyclodextrin (BCD) were prepared by the coprecipitation method. Phase solubility studies were performed and thermodynamic parameters involved in the complex formation were calculated. The solubility of Terp increased linearly as the concentration of BCD was increased, confirming the 1:1 stoichiometry of the complex. The stability constants decreased along with increasing temperature. The negative value of the enthalpy and of the Gibbs free energy demonstrated that the process is exothermic and spontaneous. Since complexation gives more ordered systems, the negative value obtained for the entropy change evidenced the encapsulation of Terp. Terp was completely encapsulated in BCD at the preparation conditions and studied molar ratios, as confirmed in the freeze-dried samples by differential scanning calorimeter. The presence of Terp greatly modified the BCD water sorption curves, and the amount of adsorbed water was lower for the complexes. The limited water solubility of Terp could be overcome by the formation of BCD inclusion complexes, and the complexes were stable at different storage conditions (relative humidities 11–97% and 25 °C). The obtained phase solubility data are useful for food or pharmaceutical products formulation involving cyclodextrins and stability predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.E. Brewster, T. Loftsson, Adv. Drug Deliv. Rev. 59, 645–666 (2007)

    Article  CAS  Google Scholar 

  2. A. Hedges, Am Chem Soc 98, 2035–2044 (1998)

    CAS  Google Scholar 

  3. M.L. Calabrò, S. Tommasini, P. Donato, D. Raneri, R. Stancanelli, P. Ficarra, J. Pharm. Biomed. Anal. 35, 365–377 (2004)

    Article  Google Scholar 

  4. C. Alvariza, R. Usero, F. Mendicuti, Spectrochim Acta A 67, 420–429 (2007)

    Article  Google Scholar 

  5. C. Lucas-Abellán, I. Fortea, J.M. López-Nicolás, E. Núñez-Delicado, Food Chem. 104, 39–44 (2007)

    Article  Google Scholar 

  6. N.E. Polyakov, T. Leshina, T.A. Konovalova, E.O. Hand, L.D. Kispert, Free Radic. Biol. Med. 36, 872–880 (2004)

    Article  CAS  Google Scholar 

  7. L. Szente, J. Szejtli, Trends Food Sci. Technol. 15, 137–142 (2004)

    Article  CAS  Google Scholar 

  8. V.T. Karathanos, I. Mourtzinos, K. Yannakopoulou, N.K. Andrikopoulos, Food Chem. 101, 652–658 (2007)

    Article  CAS  Google Scholar 

  9. Z. Lu, B. Cheng, Y. Hu, Y. Zhang, G. Zou, Food Chem. 113, 17–20 (2009)

    Article  CAS  Google Scholar 

  10. A. Adams, J.C.R. Demyttenaere, N. De Kimpe, Food Chem. 80, 525–534 (2003)

    Article  CAS  Google Scholar 

  11. S.P. Bhatia, D. McGinty, C.S. Letizia, A.M. Api, Food Chem. Toxicol. 46, 128–130 (2008)

    Article  Google Scholar 

  12. D. Pitarokili, M. Couladis, N. Petsikos-Panayotarou, O. Tzakou, J. Agric. Food Chem. 50, 6688 (2002)

    Article  CAS  Google Scholar 

  13. R. Tisserand, T. Balacs, Essential Oil Safety: A Guide for Health Care Professionals (New York, Churchill Livingstone, 1995)

    Google Scholar 

  14. S.B. Hassan, H. Gali-Muhtasib, H. Göransson, R. Larsson, Anticancer Res. 30, 1911–1919 (2010)

    CAS  Google Scholar 

  15. M. Arias, M.S. García-Falcón, L. García-Río, J.C. Mejuto, R. Rial-Otero, J. Simal-Gándara, J. Food Eng. 78(1), 69–73 (2007)

    Article  CAS  Google Scholar 

  16. I. Fichan, C. Larroche, J.B. Gros, J. Chem. Eng. Data 44(56–62), 109–114 (1999)

    Google Scholar 

  17. B. Bhandari, B. D’Arcy, G. Young, Int. J. Food Sci. Technol. 36, 453–461 (2001)

    Article  CAS  Google Scholar 

  18. T. Higuchi, K. Connors, Adv Anal Chem Instrum 4, 117–212 (1965)

    CAS  Google Scholar 

  19. T. Loftsson, M.E. Brewster, J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  Google Scholar 

  20. S. Tommasini, D. Raneri, R. Ficarra, M.L. Calabrò, R. Stancanelli, P. Ficarra, J. Pharm. Biomed. Anal. 35, 379–387 (2004)

    Article  CAS  Google Scholar 

  21. M.J. Choi, A. Soottitantawat, O. Nuchuchua, S.G. Min, U. Ruktanonchai, Food Res. Int. 42, 148–156 (2009)

    Article  CAS  Google Scholar 

  22. M. Regiert, J Incl Phenomenon Macrocycl Chem 57, 471–474 (2007)

    Article  CAS  Google Scholar 

  23. L. Greenspan, J. Res. Natl Bur. Stand. 81A, 89–96 (1977)

    Google Scholar 

  24. M.J. O’Neil (ed.), Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 12th edn. (Merck, Whitehouse Station, 2006). 9103

    Google Scholar 

  25. M.V. Rekharsky, Y. Inoue, Chem. Rev. 98, 1875–1917 (1998)

    Article  CAS  Google Scholar 

  26. T. Hoshino, K. Uekama, J. Pitha, Int. J. Pharm. 98, 239–242 (1993)

    Article  CAS  Google Scholar 

  27. I. Mourtzinos, N. Kalogeropoulos, S.E. Papadakis, K. Konstantinou, V.T. Karathanos, J. Food Sci. 73(1), 89–94 (2008)

    Article  Google Scholar 

  28. A. Cooper, D.D. MacNicol, J Chem Soc Perkin Trans 2, 761–763 (1978)

    Google Scholar 

  29. R.O. Williams, V. Mahaguna, M. Sriwongjanya, Eur. J. Pharm. Biopharm. 46, 355–360 (1998)

    Article  CAS  Google Scholar 

  30. T. Pralhad, K. Rajendrakumar, J. Pharm. Biomed. Anal. 34, 333–339 (2004)

    Article  CAS  Google Scholar 

  31. C. dos Santos, M.F. Mazzobre, B. Elizalde, M.P. Buera, Alimentos Cienc. Ingeniería Alimentos 16(2), 71–73 (2007)

    Google Scholar 

  32. G. Astray, C. Gonzalez-Barreiro, J.C. Mejuto, R. Rial-Otero, J. Simal-Gándara, Food Hydrocolloids 23, 1631–1640 (2009)

    Article  CAS  Google Scholar 

  33. M.F. Mazzobre, B. Elizalde, C. dos Santos, P. Ponce Cevallos, M.P. Buera, Nanoencapsulation of Food Ingredients in Cyclodextrins: Effect of Water Interactions and Ligand Structure, in Functional Food Product Development. Part I: New Technologies For Functional Food Manufacture, ed. by J. Smith, E. Charter (Wiley, Blackwell, 2010), pp. 25–38

    Google Scholar 

  34. P.A. Ponce Cevallos, M.P. Buera, B.E. Elizalde, J. Food Eng. 99, 70–75 (2010)

    Article  Google Scholar 

  35. G. Astray, J.C. Mejuto, J. Morales, R. Rial-Otero, J. Simal-Gándara, Food Res. Int. 43, 1212–1218 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research described in this paper is financially supported by CONICET (PIP 100468, 100846), UBA (Project UBACyT X-024) and ANPCYT (PICT 2008 02928). MFM and MPB are members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Florencia Mazzobre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzobre, M.F., dos Santos, C.I. & Buera, M. Solubility and Stability of β-Cyclodextrin–Terpineol Inclusion Complex as Affected by Water. Food Biophysics 6, 274–280 (2011). https://doi.org/10.1007/s11483-011-9208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-011-9208-1

Keywords

Navigation