Advertisement

Food Biophysics

, Volume 6, Issue 1, pp 160–169 | Cite as

Structural Relaxation During Drying and Rehydration of Food Materials—the Water Effect and the Origin of Hysteresis

  • Dominique ChampionEmail author
  • Camille Loupiac
  • Denise Simatos
  • Peter Lillford
  • Philippe Cayot
ORIGINAL ARTICLE

Abstract

The state of water in foodstuffs is a guiding principle in food design, and the equilibrium concept of water activity (Aw) is ubiquitous. It is regarded as a primary variable or “hurdle” in preservation technology, and a key variable influencing chemical reaction during storage. However, the amount of water in any system differs as function of water activity depending whether it is determined by water sorption or desorption. Even though this hysteresis behaviour has already been described in the literature, no physical interpretation of its origin has yet been proposed with respect to detailed molecular organisation. This work shows, for two different food powders, gluten and a milk-based product that the hysteresis disappears when either go through their glass transition. A more complete DSC analysis for gluten during different sorption/desorption cycles demonstrates that the hysteresis is dependent on the ageing of the material, which evolves in the glassy state and is induced by structural relaxation.

Keywords

Sorption–desorption isotherm DSC Glass transition Enthalpy relaxation Physical ageing Protein 

Notes

Acknowledgement

The authors would like to thank referees for pointing out the similarities in this study to those on synthetic polymers.

References

  1. 1.
    L. Leistner, Principles and applications of hurdle technology, in New methods for food preservation, ed. by G.W. Gould (Blackie Academic and Professional, London, 1995)Google Scholar
  2. 2.
    S.M. Alzamora, P. Cerrutti, S. Guerrero, A. López-Malo, Minimally processed fruits by combined methods, in Food preservation by moisture control: fundamentals and applications, ed. by G.V. Barbosa-Cánovas, J. Welt-Chanes (Technomics Publishing, Lancaster, 1995)Google Scholar
  3. 3.
    J. Chirife, M.P. Buera, CRC Food Sci. Nut 36, 465 (1996)CrossRefGoogle Scholar
  4. 4.
    T.P. Labuza, Food Technol. 34, 36 (1980)Google Scholar
  5. 5.
    M. Karel, Food research tasks at the beginning of the new millenium. A personal vision, in Water management in the design and distribution of quality foods (ISOPOW VII), ed. by Y.H. Roos, R.B. Leslie, P.J. Lillford (Technomics Publishing, Lancaster, 1999)Google Scholar
  6. 6.
  7. 7.
    M. Sanopoulou, P.P. Roussis, J.H. Petropoulos, J. Polym. Sci. B Polym. Phys. 33, 993 (1995)CrossRefGoogle Scholar
  8. 8.
    F. Doumenc, H. Bodiguel, B. Guerrier, Eur. Phys. J. E 27, 3 (2008)CrossRefGoogle Scholar
  9. 9.
    C. Van den Berg, Development of BET-like models sorption of water on foods, theory and relevance, in Properties of water in foods, ed. by D. Simatos, J.L. Multon (Martinus Nijhoff Pub, Dordrecht, 1985)Google Scholar
  10. 10.
    S. Ablett, P.J. Lillford, S.M.A. Baghadi, W. Derbyshire, J. Colloid Interface Sci. 67, 355 (1978)CrossRefGoogle Scholar
  11. 11.
    L.R. Genskow, Considerations in drying consumer products, in Drying 89, ed. by A.S. Mujumdar, M. Roques (Hemisphere Publishing, New York, 1990)Google Scholar
  12. 12.
    S. Achanta, M.R. Okos, Impact of drying on biological product quality, in Food Preservation by Moisture Control. ISOPOW Practicum II, ed. by G.V. Barbosa-Cánovas, J. Welti-Chanes (Technomics Publishing, Lancaster, 1995)Google Scholar
  13. 13.
    F. Franks, Biophysical methods in food research, in Critical reports on applied chemistry, ed. by H.W.-S. Chan (Blackwell, Oxford, 1984)Google Scholar
  14. 14.
    L. Slade, H. Levine, CRC Food Sci. Nut. 30, 115 (1991)CrossRefGoogle Scholar
  15. 15.
    T.R. Noel, S.G. Ring, M.A. Whittam, Trends Food Sci. Technol. 1, 62 (1990)CrossRefGoogle Scholar
  16. 16.
    D. Champion, M. Le Meste, D. Simatos, Trends Food Sci. Technol. 11, 41 (2000)CrossRefGoogle Scholar
  17. 17.
    M. Le Meste, D. Champion, G. Roudaut, G. Blond, D. Simatos, J. Food Sci. 67, 2444 (2002)CrossRefGoogle Scholar
  18. 18.
    R.C. Hoseney, K.J. Zeleznak, C.S. Lai, Am. Assoc. Cereal. Chem 63, 285 (1986)Google Scholar
  19. 19.
    M.T. Kalichevsky, E.M. Jaroszkiewicz, J.M.V. Blanshard, Int. J. Biol. Macromol. 14, 257 (1992)CrossRefGoogle Scholar
  20. 20.
    M.T. Kalichevsky, E.M. Jaroszkiewicz, S. Ablett, J.M.V. Blanshard, P.J. Lillford, Carbohydr. Polym. 18, 77 (1992)CrossRefGoogle Scholar
  21. 21.
    R.J. Nicholls, I.A.M. Appelqvist, A.P. Davies, S.J. Ingman, P.J. Lillford, J. Cereal Sci. 21, 25 (1995)CrossRefGoogle Scholar
  22. 22.
    V.T. Huang, L. Haynes, H. Levine, L. Slade, J. Therm. Anal. 47, 1289 (1996)CrossRefGoogle Scholar
  23. 23.
    T.R. Noel, R. Parker, S.G. Ring, A.S. Tatham, Int. J. Biol. Macromol. 17, 81 (1995)CrossRefGoogle Scholar
  24. 24.
    C. Bengoechea, A. Arrachid, A. Guerrero, S.E. Hill, J.R. Mitchell, J. Cereal Sci. 45, 275 (2007)CrossRefGoogle Scholar
  25. 25.
    D. Simatos, G. Blond, J. Perez, Basic physical aspects of glass transition, in Food preservation by moisture control: fundamentals and applications, ed. by G.V. Barbosa-Cánovas, J. Welti-Chanes (Technomics Publishing, Lancaster, 1995)Google Scholar
  26. 26.
    O. Bidault, A. Assifaoui, D. Champion, M. Le Meste, J. NonCryst. Solids 351, 1167 (2005)CrossRefGoogle Scholar
  27. 27.
    F. Badii, W. MacNaughtan, I.A. Farhat, Int. J. Biol. Macromol. 36, 263 (2005)Google Scholar
  28. 28.
    A. Farahnaky, F. Badii, I.A. Farhat, J.R. Mitchell, S.E. Hill, Biopolym 78, 69 (2005)CrossRefGoogle Scholar
  29. 29.
    F. Poirier-Brulez, G. Roudaut, D. Champion, M. Tanguy, D. Simatos, Biopolym 81, 63 (2006)CrossRefGoogle Scholar
  30. 30.
    D. Lourdin, P. Colonna, G.J. Brownsey, T.R. Noel, S.G. Ring, Carbohydr. Res. 337, 827 (2002)CrossRefGoogle Scholar
  31. 31.
    D. Champion, M. Maglione, G. Niquet, D. Simatos, M. Le Meste, J. Therm. Anal. Calorim. 71, 249 (2003)CrossRefGoogle Scholar
  32. 32.
    D. Simatos, G. Blond, Some aspects of the glass transition in frozen foods systems, in The Glassy State in Food, ed. by J.M.V. Blanshard, P.J. Lillford (Nottingham university Press (UK), Nottingham, 1993)Google Scholar
  33. 33.
    Y. Zheng, R.D. Priestley, G.B. McKenna, J Polymer. Sci. B Polymer. Phys. 42, 2107 (2004)CrossRefGoogle Scholar
  34. 34.
    K. Jouppila, J. Kansikas, Y.H. Roos, J. Dairy Sci. 80, 3152 (1997)CrossRefGoogle Scholar
  35. 35.
    D. Simatos, G. Blond, DSC studies and stability of frozen foods, in Water relationships in foods, ed. by H. Levine, L. Slade (Plenum, New York, 1991)Google Scholar
  36. 36.
    L.C.E. Struik, Polymer 28, 57 (1987)CrossRefGoogle Scholar
  37. 37.
    M. Hodge, J. NonCryst Solids. 169, 211 (1994)CrossRefGoogle Scholar
  38. 38.
    M. Hutchinson, Prog. Polym. Sci. 20, 703 (1995)CrossRefGoogle Scholar
  39. 39.
    B. Borde, H. Bizot, G. Vigier, A. Buléon, Carbohydr. Polym. 48, 111 (2002)CrossRefGoogle Scholar
  40. 40.
    P.L. Poole, J.L. Finney, Biopolym 23, 1647 (1984)CrossRefGoogle Scholar
  41. 41.
    M. Lüscher-mattli, M. Rüegg, Biopolym 21, 403 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dominique Champion
    • 1
    • 3
    Email author
  • Camille Loupiac
    • 1
  • Denise Simatos
    • 1
  • Peter Lillford
    • 1
    • 2
  • Philippe Cayot
    • 1
  1. 1.Team “Eau-Molécules actives-Macromolécules-Activités”Université de BourgogneDijonFrance
  2. 2.University of YorkYorkUK
  3. 3.Agrosup DijonDijonFrance

Personalised recommendations