Advertisement

Food Biophysics

, Volume 6, Issue 1, pp 138–151 | Cite as

Fibril Formation of Bovine α-Lactalbumin Is Inhibited by Glutathione

  • Steven S.-S. WangEmail author
  • Kuan-Nan Liu
  • Wen-Sing Wen
  • Pu Wang
ORIGINAL ARTICLE

Abstract

The current research is aimed at exploring the inhibitory effect of glutathione on fibril formation of an important four disulfide bond-containing whey protein, α-lactalbumin. Through numerous spectroscopic techniques and transmission electron microscopy, we found that the inhibition of amyloid formation of α-lactalbumin was dependent on the glutathione concentration and fibrillation was significantly attenuated in the presence of 5 mM glutathione. Moreover, the data from the measurements using 4,4′-dithiodipyridine reagent revealed that the treatment of α-lactalbumin with glutathione led to the exposure of sulfhydryl groups. Also, the observed inhibition of α-lactalbumin by glutathione was correlated with the reduction of disulfide bridges of protein. The results presented here suggest that the addition of food compatible reducing agent/dietary supplement such as glutathione would be useful for preventing the formation of milk protein fibrillar aggregates. The presence of these resulting aggregates can then, in turn, be used to modulate the key properties of food products such as protein beverage and yogurt.

Keywords

α-Lactalbumin Amyloid fibril Aggregation Inhibitor Glutathione 

Notes

Acknowledgments

This work was supported by grants from the National Science Council, Taiwan.

References

  1. 1.
    K. Oberg, B.A. Chrunyk, R. Wetzel, A.L. Fink, Biochemistry 33(9), 2628–2634 (1994)CrossRefGoogle Scholar
  2. 2.
    J.S. Lillard, D.A. Clare, C.R. Daubert, J. Dairy Sci. 92(1), 35–48 (2009)CrossRefGoogle Scholar
  3. 3.
    S.G. Bolder, A.J. Vasbinder, L.M.C. Sagis, E. van der Linden, Int. Dairy J. 17(7), 846–853 (2007)CrossRefGoogle Scholar
  4. 4.
    M.R. Okos, E.A. Grulke, A. Syverson, J. Food Sci. 43(2), 566–571 (1978)CrossRefGoogle Scholar
  5. 5.
    T.J. Gruetzmacher, R.L. Bradley, J. Dairy Sci. 74(9), 2838–2849 (1991)CrossRefGoogle Scholar
  6. 6.
    S.G. Bolder, H. Hendrickx, L.M.C. Sagis, E. van der Linden, J. Agric. Food Chem. 54(12), 4229–4234 (2006)CrossRefGoogle Scholar
  7. 7.
    J.N. de Wit, The use of whey protein products. Elsevier, London 4, 323–345 (1989)Google Scholar
  8. 8.
    C. Akkermans, A.J. Van Der Goot, P. Venema et al., J. Agric. Food Chem. 55(24), 9877–9882 (2007)CrossRefGoogle Scholar
  9. 9.
    S.S.S. Wang, K.N. Liu, W.H. Lee, Biophys. Chem. 144(1–2), 78–87 (2009)CrossRefGoogle Scholar
  10. 10.
    N.P. Humblet-Hua, L.M. Sagis, E. van der Linden, J. Agric. Food Chem. 56(24), 11875–11882 (2008)CrossRefGoogle Scholar
  11. 11.
    N.K. Holm, S.K. Jespersen, L.V. Thomassen et al., Biochim. Biophys. Acta 1774(9), 1128–1138 (2007)Google Scholar
  12. 12.
    F.G. Pearce, S.H. Mackintosh, J.A. Gerrard, J. Agric. Food Chem. 55(2), 318–322 (2007)CrossRefGoogle Scholar
  13. 13.
    C. Akkermans, A.J. Van der Goot, P. Venema, E. Van der Linden, R.M. Boom, Int. Dairy J. 18(10–11), 1034–1042 (2008)CrossRefGoogle Scholar
  14. 14.
    C.M. Dobson, Semin. Cell Dev. Biol. 15(1), 3–16 (2004)CrossRefGoogle Scholar
  15. 15.
    R.M. Murphy, Annu. Rev. Biomed. Eng. 4, 155–174 (2002)CrossRefGoogle Scholar
  16. 16.
    C.A. Ross, M.A. Poirier, Nat. Med. 10 Suppl, S10–17 (2004)CrossRefGoogle Scholar
  17. 17.
    V.N. Uversky, A.L. Fink, Biochim. Biophys. Acta 1698(2), 131–153 (2004)Google Scholar
  18. 18.
    M. Fandrich, V. Forge, K. Buder, M. Kittler, C.M. Dobson, and S. Diekmann, Proc. Natl. Acad. Sci. USA 100(26), 15463–15468 (2003)Google Scholar
  19. 19.
    M.C. Vaney, S. Maignan, M. Ries-Kautt, A. Ducriux, Acta Crystallogr. D Biol. Crystallogr. 52(Pt 3), 505–517 (1996)CrossRefGoogle Scholar
  20. 20.
    K. Katsumata, A. Okazaki, G.P. Tsurupa, K. Kuwajima, J. Mol. Biol. 264(4), 643–649 (1996)CrossRefGoogle Scholar
  21. 21.
    K. Kuwajima, FASEB J. 10(1), 102–109 (1996)Google Scholar
  22. 22.
    O.B. Ptitsyn, Trends Biochem. Sci. 20(9), 376–379 (1995)CrossRefGoogle Scholar
  23. 23.
    O.B. Ptitsyn, V.E. Bychkova, V.N. Uversky, Philos T Roy Soc B 348(1323), 35–41 (1995)CrossRefGoogle Scholar
  24. 24.
    L. Li, J.Y. Chang, Protein J. 23(1), 3–10 (2004)CrossRefGoogle Scholar
  25. 25.
    M.K. McGuffey, D.E. Otter, J.H. van Zanten, E.A. Foegeding, Int. Dairy J. 17(10), 1168–1178 (2007)CrossRefGoogle Scholar
  26. 26.
    M. Nakamura, A. Takamizawa, H. Yamada, K. Hiraoka, S. Akashi, Rapid Commun. Mass Spectrom. 21(10), 1635–1643 (2007)CrossRefGoogle Scholar
  27. 27.
    L.D. Estrada, C. Soto, Curr. Top. Med. Chem. 7(1), 115–126 (2007)CrossRefGoogle Scholar
  28. 28.
    Y. Porat, A. Abramowitz, E. Gazit, Chem. Biol. Drug Des. 67(1), 27–37 (2006)CrossRefGoogle Scholar
  29. 29.
    Z. Gazova, A. Bellova, Z. Daxnerova et al., Eur. Biophys. J. 37(7), 1261–1270 (2008)CrossRefGoogle Scholar
  30. 30.
    K. Ono, M. Yamada, J. Neurochem. 97(1), 105–115 (2006)CrossRefGoogle Scholar
  31. 31.
    K. Yamamoto, H. Yagi, D. Ozawa, K. Sasahara, H. Naiki, Y. Goto, J. Mol. Biol. 376(1), 258–268 (2008)CrossRefGoogle Scholar
  32. 32.
    S. Kumar, V.K. Ravi, R. Swaminathan, Biochem. J. 415(2), 275–288 (2008)CrossRefGoogle Scholar
  33. 33.
    H. LeVine 3rd, Protein Sci. 2(3), 404–410 (1993)CrossRefGoogle Scholar
  34. 34.
    L. Whitmore, B.A. Wallace, Nucleic Acids Res. 32, W668–W673 (2004)CrossRefGoogle Scholar
  35. 35.
    R.E. Hansen, H. Ostergaard, P. Norgaard, J.R. Winther, Anal. Biochem. 363(1), 77–82 (2007)CrossRefGoogle Scholar
  36. 36.
    V. Ali, K. Prakash, S. Kulkarni, A. Ahmad, K.P. Madhusudan, V. Bhakuni, Biochemistry 38(41), 13635–13642 (1999)CrossRefGoogle Scholar
  37. 37.
    O.K. Gasymov, A.R. Abduragimov, B.J. Glasgow, Arch. Biochem. Biophys. 468(1), 15–21 (2007)CrossRefGoogle Scholar
  38. 38.
    C.P. Liu, Z.Y. Li, G.C. Huang, S. Perrett, J.M. Zhou, Biochimie 87(11), 1023–1031 (2005)CrossRefGoogle Scholar
  39. 39.
    A.D. Morara, R.L. McCarley, Org. Lett. 8(10), 1999–2002 (2006)CrossRefGoogle Scholar
  40. 40.
    A. Filosa, A.M. English, J. Biol. Chem. 276(24), 21022–21027 (2001)CrossRefGoogle Scholar
  41. 41.
    P. Maher, Ageing Res. Rev. 4, 288–314 (2005)CrossRefGoogle Scholar
  42. 42.
    J.S. Bains, C.A. Shaw, Brain Res. Brain Res. Rev. 25(3), 335–358 (1997)CrossRefGoogle Scholar
  43. 43.
    D.A. Dickinson, H.J. Forman, Ann. NY Acad. Sci. 973, 488–504 (2002)CrossRefGoogle Scholar
  44. 44.
    B.M. Lomaestro, M. Malone, Ann. Pharmacother. 29(12), 1263–1273 (1995)Google Scholar
  45. 45.
    D.C. Thorn, H. Ecroyd, M. Sunde, S. Poon, J.A. Carver, Biochemistry 47(12), 3926–3936 (2008)CrossRefGoogle Scholar
  46. 46.
    D.C. Thorn, S. Meehan, M. Sunde et al., Biochemistry 44(51), 17027–17036 (2005)CrossRefGoogle Scholar
  47. 47.
    W.S. Gosal, A.H. Clark, S.B. Ross-Murphy, Biomacromolecules 5(6), 2408–2419 (2004)CrossRefGoogle Scholar
  48. 48.
    L.N. Arnaudov, R. de Vries, H. Ippel, C.P.M. van Mierlo, Biomacromolecules 4(6), 1614–1622 (2003)CrossRefGoogle Scholar
  49. 49.
    P. Rasmussen, A. Barbiroli, F. Bonomi et al., Biopolymers 86(1), 57–72 (2007)CrossRefGoogle Scholar
  50. 50.
    J. Goers, S.E. Permyakov, E.A. Permyakov, V.N. Uversky, A.L. Fink, Biochemistry 41(41), 12546–12551 (2002)CrossRefGoogle Scholar
  51. 51.
    J. Otte, R. Ipsen, R. Bauer, M.J. Bjerrum, R. Waninge, Int. Dairy J. 15(3), 219–229 (2005)CrossRefGoogle Scholar
  52. 52.
    F. Yang, M. Zhang, J. Chen, Y. Liang, Biochim. Biophys. Acta 1764(8), 1389–1396 (2006)Google Scholar
  53. 53.
    R. Mishra, K. Sorgjerd, S. Nystrom, A. Nordigarden, Y.C. Yu, P. Hammarstrom, J. Mol. Biol. 366(3), 1029–1044 (2007)CrossRefGoogle Scholar
  54. 54.
    L.N. Arnaudov, R. de Vries, Biophys. J. 88(1), 515–526 (2005)CrossRefGoogle Scholar
  55. 55.
    S.G. Bolder, L.M.C. Sagis, P. Venema, E. van der Linden, J. Agric. Food Chem. 55(14), 5661–5669 (2007)CrossRefGoogle Scholar
  56. 56.
    S.M. Loveday, M.A. Rao, L.K. Creamer, H. Singh, J. Food Sci. 74(3), R47–R55 (2009)CrossRefGoogle Scholar
  57. 57.
    C. Santambrogio, R. Grandori, Rapid Commun. Mass Spectrom. 22(24), 4049–4054 (2008)CrossRefGoogle Scholar
  58. 58.
    D. Matulis, R. Lovrien, Biophys. J. 74(1), 422–429 (1998)CrossRefGoogle Scholar
  59. 59.
    M.L. Brown, J. Metheany, J. Pharm. Sci. 63(8), 1214–1217 (1974)CrossRefGoogle Scholar
  60. 60.
    W.R. Kirk, E. Kurian, F.G. Prendergast, Biophys. J. 70(1), 69–83 (1996)CrossRefGoogle Scholar
  61. 61.
    B. Raman, E. Chatani, M. Kihara et al., Biochemistry 44(4), 1288–1299 (2005)CrossRefGoogle Scholar
  62. 62.
    W. Dzwolak, S. Grudzielanek, V. Smirnovas et al., Biochemistry 44(25), 8948–8958 (2005)CrossRefGoogle Scholar
  63. 63.
    O.M. El-Agnaf, J.M. Sheridan, C. Sidera et al., Biochemistry 40(12), 3449–3457 (2001)CrossRefGoogle Scholar
  64. 64.
    Q.H. Zhang, J.W. Kelly, Biochemistry 42(29), 8756–8761 (2003)CrossRefGoogle Scholar
  65. 65.
    A.K. Das, M.G. Drew, D. Haldar, A. Banerjee, Org. Biomol. Chem. 3(19), 3502–3507 (2005)CrossRefGoogle Scholar
  66. 66.
    A. Cao, D. Hu, L. Lai, Protein Sci. 13(2), 319–324 (2004)CrossRefGoogle Scholar
  67. 67.
    S. Srisailam, T.K.S. Kumar, T. Srimathi, C. Yu, J. Am. Chem. Soc. 124(9), 1884–1888 (2002)CrossRefGoogle Scholar
  68. 68.
    S.S.S. Wang, K.N. Liu, Y.C. Lu, Biochem. Biophys. Res. Commun. 381(4), 639–642 (2009)CrossRefGoogle Scholar
  69. 69.
    S.S.S. Wang, K.N. Liu, B.W. Wang, Eur. biophys j. 39(8), 1229–1242 (2010)CrossRefGoogle Scholar
  70. 70.
    S. Grip, J. Johansson, M. Hedhammar, Protein Sci. 18(5), 1012–1022 (2009)CrossRefGoogle Scholar
  71. 71.
    Y.J. Kang, Exp. Biol. Med. Maywood 231(9), 1459–1467 (2006)Google Scholar
  72. 72.
    A. Clark, in Gelation of globular proteins, ed. by J.R. Mitchell (Elsevier Applied Science, London, 1998), pp. 77–142Google Scholar
  73. 73.
    C. Le Bon, T. Nicolai, D. Durand, Int. J. Food Sci. Technol. 34(5–6), 451–465 (1999)Google Scholar
  74. 74.
    C. Veerman, H. Baptist, L.M.C. Sagis, E. Van der Linden, J. Agric. Food Chem. 51(13), 3880–3885 (2003)CrossRefGoogle Scholar
  75. 75.
    E.A. Foegeding, E.L. Bowland, C.C. Hardin, Food Hydrocoll. 9(4), 237–249 (1995)CrossRefGoogle Scholar
  76. 76.
    A.M. Donald, Soft Matter 4(6), 1147–1150 (2008)CrossRefGoogle Scholar
  77. 77.
    N. Nio, M. Motoki, K. Takinami, Agr Biol Chem Tokyo 49(8), 2283–2286 (1985)Google Scholar
  78. 78.
    M. Britten, H.J. Giroux, Food Hydrocoll. 15(4–6), 609–617 (2001)CrossRefGoogle Scholar
  79. 79.
    J.B. Pedersen, P. Fojan, J. Sorensen, S.B. Petersen, J. Fluoresc. 16(4), 611–621 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Steven S.-S. Wang
    • 1
    Email author
  • Kuan-Nan Liu
    • 1
  • Wen-Sing Wen
    • 1
  • Pu Wang
    • 1
  1. 1.Department of Chemical EngineeringNational Taiwan UniversityTaipeiRepublic of China

Personalised recommendations