Skip to main content

Advertisement

Log in

Thermal, Mechanical and Microstructures Properties of Cellulose Derivatives Films: A Comparative Study

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The proposal in this study was to evaluate the physical properties of different biopolymers films. The materials used were: pectin, carboxyl methylcellulose, methylcellulose, hydroxyl propylcellulose, hydroxypropyl-methylcellulose, and corn waxy starch; from these polysaccharides aqueous dispersions were prepared to 3% (w/v) for obtained films. In these biopolymer films, the thermal diffusivities (α) was evaluated by the Open Photoacoustic Cell method; also, their mechanical properties as tensile strength, elongation, and Young’s modulus were measured, their crystallinity percentage was evaluated by X-ray diffraction and microstructure through atomic force microscopy in contact mode. From the polysaccharide films, it was observed that most of them were flexible and transparent. In the case of the films, mechanical properties were found that the highest value of tensile strength and Young’s modulus corresponded to carboxyl methylcellulose with 69.17 and 1,912.20 MPa values, respectively. Also, Open Photoacoustic Cell method and X-ray diffraction measurements showed that there exist a correlation between the thermal diffusivity values and the crystallinity measured in the biopolymer films. It was also observed that α values of cellulose derived was affected by the substitution group in the molecule, reaching the highest α value, the films of carboxyl methylcellulose. Regarding the microstructural of the films, starch showed the highest roughness value (88.6 nm) whereas hydroxypropyl-methylcellulose resulted with the lowest roughness value (7.67 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O.A. Cavalcanti, G. Van den Mooter, I. Caramico-Soares, R. Kinget, Drug Dev Ind Pharm 28, 157–164 (2002)

    Article  CAS  Google Scholar 

  2. C. Desmond, R.P. Ross, E.O. O’Callaghan, G. Fitzgerald, C. Stanton, J Appl Microbiol 93, 1003–1011 (2002)

    Article  CAS  Google Scholar 

  3. A. Dimantov, E. Kesselman, E. Shimoni, Food Hydrocoll 18, 29–37 (2004)

    Article  CAS  Google Scholar 

  4. M.K. Chourasia, S.K. Jain, J Pharm Pharmaceut Sci 6, 33–66 (2003)

    CAS  Google Scholar 

  5. Y.S.R. Krishnaiah, V. Satyanarayana, B. Dinesh Kumar, R.S. Karthikeyan, Eur J Pharm Sci 16, 185–192 (2002)

    Article  CAS  Google Scholar 

  6. R. Qi, Z. He, R. Zhang, X. Xu, School of pharmacy, Shenyang Pharmaceutical University. 18, 395–397 (2001)

  7. Z. Wakerly, J.T. Fell, D. Attwood, D. Parkins, Int J Pharm 153, 219–224 (1997)

    Article  CAS  Google Scholar 

  8. N. Pearnchob, J. Siepmann, R. Bodmeir, Drug Dev Ind Pharm 29, 925–938 (2003)

    Article  CAS  Google Scholar 

  9. B. Arica, M.Y. Arica, H.S. Kas, A.A. Hincal, V. Hasirci, J Microencapsul 13, 689–699 (1996)

    Article  CAS  Google Scholar 

  10. S.Y. Lin, Y.L. Tzan, C.J. Lee, C.N. Weng, J Microencapsul 8, 317–325 (1991)

    Article  CAS  Google Scholar 

  11. P. Sriamornsak, J. Nunthanid, S. Wanchana, M. Luangtana-Anan, Pharm Dev Technol 8, 311–318 (2003)

    Article  CAS  Google Scholar 

  12. M.K. Chourasia, S.K. Jain, Drug Deliv 11, 129–148 (2004)

    Article  CAS  Google Scholar 

  13. S. Kosaraju, Crit Rev Food Sci Nutr 45, 251–258 (2005)

    Article  CAS  Google Scholar 

  14. R. Crittenden, A. Laitila, P. Forsell, J. Matto, M. Saarela, T. Mattila-Sandholm, P. Myllarinen, Appl. Environ. Microbiol. 3469–3475 (2001)

  15. J. Hogan, Film-coating material and their properties, in Pharmaceutical Coating Technology, ed. by G. Cole, J. Hogan, M. Aulton (Taylor & Francis, London, 1995), pp. 27–33

    Google Scholar 

  16. F. Debeaufort, A. Voilley, J Agric Food Chem 45, 685–689 (1997)

    Article  CAS  Google Scholar 

  17. S.A. Tomás, A. Cruz-Orea, S. Stolik, R. Pedroza-Islas, D.L. Villagómez-Zavala, C. Gómez-Corona, Int J Thermophys 25, 611–620 (2004)

    Article  Google Scholar 

  18. O. Pérez, V. Wargon, A. Pilosof, Food Hydrocolloids 20, 966–974 (2006)

    Article  Google Scholar 

  19. L.S. Liu, C.K. Liu, M.L. Fishman, K.B. Hicks, J Agric Food Chem 55, 2349–2355 (2007)

    Article  CAS  Google Scholar 

  20. M. Anker, M. Standing, A.M. Hermansson, J Agr Food Chem 46, 1820–1829 (1998)

    Article  CAS  Google Scholar 

  21. F. Martinez-Bustos, M. Lopez-Soto, E. San Martin-Martinez, J.J. Zazueta-Morales, J.J. Velez-Medina, J Food Eng 78, 1212–1220 (2007)

    Article  Google Scholar 

  22. M.A. Aguilar-Mendez, E. San Martin-Martinez, J.E. Morales, A. Cruz-Orea, M.R. Jaime-Fonseca, Anal Sci 23, 457–461 (2007)

    Article  Google Scholar 

  23. A.M. Mansanares, A.C. Bento, H. Vargas, N.F. Leite, L.C.M. Miranda, Phys Rev B 42, 4477–4486 (1990)

    Article  Google Scholar 

  24. N.F. Leite, N. Cella, H. Vargas, L.C.M. Miranda, J Appl Phys 61, 3025 (1987)

    Article  CAS  Google Scholar 

  25. H. Chen, J Dairy Sci 78, 2563–2583 (1995)

    Article  CAS  Google Scholar 

  26. L. Gibson, M.F. Ashby, Cellular solids: structure and properties (Pergamon, Oxford, 1988)

    Google Scholar 

  27. S.-L. Quan, S.-G. Kang, I.-J. Chin, Cellulose 17, 223–230 (2010)

    Article  CAS  Google Scholar 

  28. H. Al-Obaidi, G. Buckton, AAPS PharmSciTech 10, 4 (2009)

    Article  Google Scholar 

  29. L. Wang, Y. Xu, Cellulose 13, 191–200 (2006)

    Article  CAS  Google Scholar 

  30. M. Anuradha, B. Malvika, J Appl Polym Sci 98, 1186–1191 (2005)

    Article  Google Scholar 

  31. D. Ye, X. Farriol, Cellulose 12, 507–515 (2005)

    Article  CAS  Google Scholar 

  32. S. Sh. Rashidova, N.L. Voropaeva, G.V. Nikonovich, N.D. Burkhanova, S.M. Yugay, H.P. Pulatova, I. Sh. Ibragimov, I.N. Ruban, Chromatographia 59, 521–524 (2004)

    Google Scholar 

  33. G. Ziegler, D.P.H. Hasselman, J Mater Sci 16, 495–503 (1981)

    Article  CAS  Google Scholar 

  34. S. Stolik, A. Valor, S.A. Tomás, E. Reguera, F. Sánchez, Int J Thermophys 25, 511–517 (2004)

    Article  CAS  Google Scholar 

  35. E. Princi, S. Vicini, E. Pedemonte, V. Arrighi, I. Mc Ewen, J Therm Anal Calorim 80, 369–373 (2005)

    Article  CAS  Google Scholar 

  36. J.N. BeMiller, R.L. Whistler, Carbohydrates, in Chemistry of Food, ed. by O.R. Fennema (Marcel Dekker, USA, 1996)

    Google Scholar 

  37. C.B. Mc Crystal, J.L. Ford, A.R. Rajaba-Siahboomi, J Pharm Sci 88, 797–801 (1999)

    Article  CAS  Google Scholar 

  38. R.L. Whistler, J.N. BeMiller, Carbohydrate Chemistry for Food Scientists. (Eagan Press. USA. Eagan Press, St. Paul, MN), 240pp (1999)

  39. D.G. Coffey, D.A. Bell, A. Henderson, Cellulose and cellulose derivatives. In Food polysaccharides and their applications, ed. by A.M. Stephen (Marcel Dekker Inc. USA), pp. 123–153 (1995)

  40. M. Anker, M. Stading, A.M. Hermansson, J Agric Food Chem 48, 3806–3816 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo San Martín-Martinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinoza-Herrera, N., Pedroza-Islas, R., San Martín-Martinez, E. et al. Thermal, Mechanical and Microstructures Properties of Cellulose Derivatives Films: A Comparative Study. Food Biophysics 6, 106–114 (2011). https://doi.org/10.1007/s11483-010-9181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-010-9181-0

Keywords

Navigation