Advertisement

Food Biophysics

, Volume 6, Issue 1, pp 94–105 | Cite as

Measurement of Dynamic Interfacial Tension in a Carbohydrate Melt at High Temperature Using a Drop Volume Tensiometer

  • Christopher M. GregsonEmail author
  • Yunhong Rong
  • Matthew Sillick
  • Alan Parker
ORIGINAL ARTICLE

Abstract

Many food and encapsulation products are dispersed systems with a highly viscous concentrated carbohydrate solution or melt as the continuous phase and for which interfacial properties are important at high temperatures. A drop volume interfacial tensiometer was utilized to provide objective characterization of surfactant behavior in such systems at temperatures typical of food production processes. Interfacial tension was measured over a range of flow rates within a maltodextrin–sucrose–water melt at 105 °C using limonene as the oil phase and a sucrose ester surfactant. The results showed that the kinetics of surfactant adsorption were faster when the surfactant was dissolved in the oil phase. However, the low critical micelle concentration in the oil phase resulted in a lower than expected diffusion coefficient.

Keywords

Emulsion Candy Adsorption kinetics Encapsulation 

References

  1. 1.
    N.E. Harris, S. Crespo, M.S. Peterson, A Formulary of Candy Products, 2nd edn. (Chemical Publishing Company Inc., Brooklyn, 1998). ISBN 0-8206-0353-8Google Scholar
  2. 2.
    H.E. Swisher, Solid flavouring composition and method of preparing same. US Patent 2,809,895. Sunkist Growers Inc., Sherman Oaks, CA (1957)Google Scholar
  3. 3.
    D. Benczedi, P.E. Bouquerand, Process for the preparation of granules for the controlled release of volatiles compounds. PCT WO 01/17372 A1, Firmenich SA, Geneva, (2001)Google Scholar
  4. 4.
    P. Walstra, Physical chemistry of foods (Marcel Dekker, New York, 2003). ISBN 0-8247-9355-2Google Scholar
  5. 5.
    D.J. McClements, Food Emulsions: Principles, Practices, and Techniques, 2nd edn. (CRC Series in Contemporary Food Science, 2004). ISBN 0849320232Google Scholar
  6. 6.
    H.P. Grace, Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun 14, 225–277 (1982)CrossRefGoogle Scholar
  7. 7.
    E.J. Hinch, A. Acrivos, Long slender drops in a simple shear flow. J Fluid Mech 98(2), 305–329 (1980)CrossRefGoogle Scholar
  8. 8.
    Y.W. Stegeman, F.N. van de Vosse, H.E.H. Meijer, On the applicability of the grace curve in practical mixing operations. Can J Chem Eng 80(8), 1–6 (2002)Google Scholar
  9. 9.
    N.R. Demarquette, Evaluation of experimental techniques for determining interfacial tension between molten polymers. Int Mater Rev 48(4), 247–269 (2003)CrossRefGoogle Scholar
  10. 10.
    S.M. Jafari, E. Assadpoor, Y. He, B. Bhandari, Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids 22, 1191–1202 (2008)CrossRefGoogle Scholar
  11. 11.
    U. Teipel, N. Aksel, Adsorption behavior of nonionic surfactants studied by drop volume technique. Chem Eng Technol 24(4), 393–400 (2001)CrossRefGoogle Scholar
  12. 12.
    D.M. Colegate, C.D. Bain, Adsorption kinetics in micellar solution of non-ionic surfactants. Phys Rev Lett 95(198302), 1–4 (2005)Google Scholar
  13. 13.
    S.N. Moorkanikkara, D. Blankschtein, New methodology to determine the rate-limiting adsorption kinetics mechanism from experimental dynamic surface tension data. J Colloid Interface Sci 302, 1–19 (2006)CrossRefGoogle Scholar
  14. 14.
    B.A. Noskov, Kinetics of adsorption from micellar solutions. Adv Colloid Interface Sci 95, 237–293 (2002)CrossRefGoogle Scholar
  15. 15.
    V.B. Fainerman, V.D. Mys, A.V. Makievski, J.T. Petkov, R. Miller, Dynamic surface tension of micellar solutions in the millisecond and submillisecond time range. J Colloid Interface Sci 302, 40–46 (2006)CrossRefGoogle Scholar
  16. 16.
    K.D. Danov, P.A. Kralchevsky, N.D. Denkov, K.P. Ananthapadmanabhan, A. Lips, Mass transport in micellar surfactant solution: 2. Theoretical modelling of adsorption at a quiescent interface. Adv Colloid Interface Sci 119, 17–33 (2006)CrossRefGoogle Scholar
  17. 17.
    A. Kabalnov, H. Wennerström, Macroemulsion stability: the oriented wedge theory revisited. Langmuir 12(2), 276–292 (1996)CrossRefGoogle Scholar
  18. 18.
    I. Vavruch, The interfacial tension of sucrose solutions in organic solvents measured by the hanging-drop method. Listy Cukrov 65, 18 (1948)Google Scholar
  19. 19.
    R.L. Howard, T. Sollman, Interfacial tension of some aqueous solutions against oils, as corrected for specific gravity. J Phys Chem 28, 1291–1296 (1924)CrossRefGoogle Scholar
  20. 20.
    A. Docoslis, R.F. Giese, C.J. van Oss, Influence of the water–air interface on the apparent surface tension of aqueous solutions of hydrophilic solutes. Colloids Surf, B Biointerfaces 19(2), 147–162 (2000)CrossRefGoogle Scholar
  21. 21.
    U. Klinkesorn, P. Sophanodora, P. Chinachoti, D.J. McClements, Stability and rheology of corn oil-in-water emulsions containing maltodextrin. Food Res Int 37(9), 851–859 (2004)Google Scholar
  22. 22.
    N. Krasteva, D. Vollhardt, Morphology and phase behaviour of monoglyceride monolayers on aqueous sugar substrates. Colloids Surf, A Physicochem Eng asp 171(1–3), 49–57 (2000)CrossRefGoogle Scholar
  23. 23.
    M.G. Semenova, A.S. Antipova, L.E. Belyakova, Food protein interactions in sugar solutions. Curr Opin Colloid Interface Sci 7, 438–444 (2002)CrossRefGoogle Scholar
  24. 24.
    D. Guzey, D.J. McClements, J. Weiss, Adsorption kinetics of BSA at air–sugar solution interfaces as affected by sugar type and concentration. Food Res Int 36(7), 649–660 (2003)CrossRefGoogle Scholar
  25. 25.
    Z.K. Bubnik, Sugar Technologists Manual, 8th edn. (Bartens, Berlin, 1995)Google Scholar
  26. 26.
    H. Schoeneck, W. Wanninger, Surface tension of aqueous sucrose solutions. Zucker 18, 477–480 (1965)Google Scholar
  27. 27.
    K. Feldkamp, Oberflächenspannungen wässriger Kochsalz -und Saccharose-Lösungen [Surface tensions of aqueous sodium chloride and sucrose solutions]. Chem Ing-Techn 40, 548–549 (1968)CrossRefGoogle Scholar
  28. 28.
    C. Rulison, Results of interfacial tension tests between pre-equilibrated ethyl acetate and water, using a Krüss drop volume tensiometer DVT10/DVT30 with two types of orifices. Krüss Technical Note no. 309e (2004)Google Scholar
  29. 29.
    J.C. Earnshaw, E.G. Johnson, B.J. Carroll, P.J. Doyle, The drop volume method for interfacial tension determination: an error analysis. J Colloid Interface Sci 177(1), 150–155 (1996)CrossRefGoogle Scholar
  30. 30.
    J.W. Campanelli, X. Wang, Dynamic interfacial tension of surfactant mixtures at liquid–liquid interfaces. J Colloid Interface Sci 213, 340–351 (1999)CrossRefGoogle Scholar
  31. 31.
    W.D. Harkins, F.E. Brown, The determination of surface tension (free surface energy), and the weight of falling drops: the surface tension of water and benzene by the capillary height method. J Am Chem Soc 41, 499 (1919)CrossRefGoogle Scholar
  32. 32.
    J. Van Hunsel, G. Bleys, P. Joos, Adsorption kinetics at the oil/water interface. J Colloid Interface Sci 114(2), 432–441 (1986)CrossRefGoogle Scholar
  33. 33.
    S.A. Zholob, V.B. Fainerman, R. Miller, Dynamic adsorption behavior of polyethylene glycol octylphenyl ethers at the water/oil interface studied by a dynamic drop volume technique. J Colloid Interface Sci 186(1), 149–159 (1997)CrossRefGoogle Scholar
  34. 34.
    A.F.H. Ward, L. Tordai, Time dependence of boundary tensions of solutions. 1. The role of diffusion in time effects. J Chem Phys 14, 453–461 (1946)CrossRefGoogle Scholar
  35. 35.
    P. Joos, E. Rillaerts, Theory on the determination of the dynamic surface tension with the drop volume and maximum bubble pressure methods. J Colloid Interface Sci 79(1), 96–100 (1981)CrossRefGoogle Scholar
  36. 36.
    R. Miller, M. Bree, V.B. Fainerman, Hydrodynamic effects in measurements with the drop volume technique at small drop times—3. Surface tensions of viscous liquids colloids and surfaces. A Physicochem Eng asp 142, 237–242 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Christopher M. Gregson
    • 1
    Email author
  • Yunhong Rong
    • 1
  • Matthew Sillick
    • 1
  • Alan Parker
    • 2
  1. 1.Firmenich Inc.PlainsboroUSA
  2. 2.Firmenich S.AGeneva 8Switzerland

Personalised recommendations