Skip to main content
Log in

Application of High-Intensity Ultrasounds to Control the Size of Whey Proteins Particles

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

In this paper, we reported a new method to prepare whey protein microparticles via high-intensity ultrasound disruption. Particles morphology was characterized by confocal microscopy, and their size and distribution were analyzed by light scattering technique. Starting whey protein isolate (WPI) exhibited changes in size and distribution according to its concentration. For WPI, 7.5% (w/w) mean size was 0.7 µm, and upon sonication at ambient temperature, the size was reduced up to 0.2 µm showing the particles a rounded morphology. Sonication at room temperature of gelled WPI led to particles with sizes between 0.1 and 10 µm which had a tendency to flocculate. When WPI was submitted to sonication under heating at protein denaturation temperature, different effects were observed according to protein concentration. The particle size was reduced for the lowest WPI concentration (7.5 wt.%), did not change at 9 wt.%, but strongly increased at 12 wt.%, in comparison with the untreated sample. WPI particles of desired size in the micron range may be obtained either by sonication of gelled WPI or by sonication under heating at denaturation temperature by controlling processing variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Mc Clements, Advances in the application of ultrasound in food analysis and processing. Trends Food Sci. Technol. 6, 293–299 (1995)

    Article  CAS  Google Scholar 

  2. D. Knorr, M. Zenker, V. Heinz, D.-U. Lee, Application and potential of ultrasonics in food processing. Trends Food Sci. Technol. 15, 261–266 (2004)

    Article  CAS  Google Scholar 

  3. Y.F. Lu, N. Riyanto, L.K. Weavers, Sonolysis of synthetic sediment particles: particle characteristics affecting particle dissolution and size reduction. Ultrason. Sonochem. 9, 181–188 (2002)

    Article  CAS  Google Scholar 

  4. J. Klíma, A. Frias-Ferrer, J. González-García, J. Ludvík, V. Saéz, J. Iniesta, Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results. Ultrason. Sonochem. 14, 19–28 (2006)

    Article  Google Scholar 

  5. C. Horst, Y.S. Chen, U. Kunz, U. Hoffmann, Design, modeling and performance of a novel sonochemical reactor for heterogeneous reactions. Chem. Eng. Sci. 51, 1837–1846 (1996)

    Article  CAS  Google Scholar 

  6. T.G. Leighton, Bubble population phenomena in acoustic cavitation. Ultrason. Sonochem. 2(2), S123–S136 (1995)

    Article  Google Scholar 

  7. M. Villamiel, P. Jong, Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins and native enzymes of milk. J. Agric. Food Chem. 48, 472–478 (2000)

    Article  CAS  Google Scholar 

  8. F. Priego-Capote, M.D. Luque dr Castro, Analytical uses of ultrasound I. Sample preparation. Trends in Analytical Chemistry 23(9), 644–653 (2004)

    Article  CAS  Google Scholar 

  9. Sujata Hena, H. Das, Modeling of particle size distribution of sonicated coconut milk emulsion: effect of emulsifiers and sonication time. Food Res. Int. 39, 606–611 (2006)

    Article  Google Scholar 

  10. S. Freitas, B. Rudolf, P.M. Hans, B. Gander, Flow-through ultrasonic emulsification combined with static micromixing for aseptic production of microspheres by solvent extraction. Eur. J. Pharm. Biopharm. 61, 181–187 (2005)

    Article  CAS  Google Scholar 

  11. J. Pereira-Lachataignerais, R. Pons, P. Panizza, L. Courbin, J. Rouch, O. López, Study and formation of vesicle systems with low polydispersity index by ultrasound method. Chem. Phys. Lipids. 140, 88–97 (2006)

    Article  CAS  Google Scholar 

  12. J.P. Lorimer, T.J. Mason, T.C. Cuthbert, E.A. Brookfield, Effect of ultrasound on degradation of aqueous native dextran. Ultrason. Sonochem. 2, s55–s57 (1995)

    Article  CAS  Google Scholar 

  13. R.H. Chen, J.R. Chang, J.S. Shyur, Effect of ultrasounds conditions and storages in acidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohydr. Res. 299, 287–294 (1997)

    Article  CAS  Google Scholar 

  14. N. Kardos, J. Luche, Sonichemistry in carbohydrate compounds. Carbohydr. Res. 332, 115–131 (2001)

    Article  CAS  Google Scholar 

  15. R. Eschette, D.P. Norwood, Ultrasonic degradation of polysaccharides studied by multiangle laser light scattering. Presented as a poster number RI-107 at the Annual March Meeting of the Physical Society. Austin, TX, USA, March 3–7 (2003).

  16. H. Liu, J. Bao, Y. Du, X. Zhou, J.F. Kennedy, Effect of ultrasonic treatment on the biochemphysical properties of chitosan. Carbohydr. Polym. 64, 553–559 (2006)

    Article  CAS  Google Scholar 

  17. Y. Iida, T. Tuziuti, K. Yasui, A. Towata, T. Kozuka, Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innovative Food Science & Emerging Technologies 9, 140–146 (2008)

    Article  CAS  Google Scholar 

  18. N. Camino, O.E. Pérez, A.M.R. Pilosof, Molecular and functional modification of hydroxypropylmethylcellulose by high-intensity ultrasound. Food Hydrocoll. 23, 1089–1095 (2009)

    Article  CAS  Google Scholar 

  19. Z. Xiaodong, L. Qunfang, D. Gance, J. Faxiangb, Ultrasonic degradation of polysilane polymers. Polym. Degrad. Stab. 60, 409–413 (1998)

    Article  Google Scholar 

  20. I. Gülseren, D. Güzey, B.D. Bruce, J. Weiss, Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrason. Sonochem. 14, 173–183 (2007)

    Article  Google Scholar 

  21. Z. Li, X. Tao, Y. Cheng, Z. Wu, Z. Zhang, H. Dang, A facile way for preparing tin nanoparticles from bulk via ultrasound dispersion. Ultrason. Sonochem. 14, 89–92 (2007)

    Article  CAS  Google Scholar 

  22. Z. Guo, A.G. Jones, N. Li, S. Germana, High-speed observation of the effect of ultrasound on liquid mixing and agglomerate crystal breakage processes. Powder Technol. 171, 146–153 (2007)

    Article  CAS  Google Scholar 

  23. F. Franco, J.A. Cecila, L.A. Pérez-Maqueda, J.L. Pérez-Rodriguez, C.S.F. Gomes, Particle-size reduction of dickite by ultrasound treatments: effect on the structure, shape and particle-size distribution. Appl. Clay Sci. 35, 119–127 (2007)

    Article  CAS  Google Scholar 

  24. X. Huang, Y. Kakuda, W. Cui, Hydrocolloids in emulsions: particle size distribution and interfacial activity. Food Hydrocoll. 15, 533–542 (2001)

    Article  CAS  Google Scholar 

  25. J. Leroux, V. Lagendorff, G. Schick, V. Vaishnav, J. Mazoyer, Emulsion stabilizing properties of pectins. Food Hydrocoll. 17, 455–462 (2003)

    Article  CAS  Google Scholar 

  26. A.R. Jambrak, V. Lelas, T.J. Mason, G. Kresic, M. Badanjak, Physical properties of ultrasound treated soy proteins. J. Food Eng. 93, 386–393 (2009)

    Article  CAS  Google Scholar 

  27. P. Stepanek, Dynamic light scattering: the method and some applications, W. Brown ed. (Oxford University Press, 1993), p 177

  28. V. Militello, C. Cassarino, A. Emanuele, A. Giostra, F. Pullara, M. Leone, Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophys. Chem. 107, 175–187 (2004)

    Article  CAS  Google Scholar 

  29. M. Boulet, M. Britten, F. Lamarche, Aggregation of some food proteins in aqueus dispersions: effect of concentration, pH and ionic strength. Food Hydrocoll. 14, 135–144 (2000)

    Article  CAS  Google Scholar 

  30. A. Ebringerová, Z. Hromádková, The effect of ultrasound on the structure and properties of the water soluble corn hull heteroxylan. Ultrason. Sonochem. 4, 305–309 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. R. Pilosof.

Additional information

This research was supported by Universidad de Buenos Aires, Agencia Nacional de Promoción Científica y Tecnológica, and Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, L., Pilosof, A.M.R. Application of High-Intensity Ultrasounds to Control the Size of Whey Proteins Particles. Food Biophysics 5, 203–210 (2010). https://doi.org/10.1007/s11483-010-9161-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-010-9161-4

Keywords

Navigation