Skip to main content

The Glycemic Elemental Profile of Trichosanthes dioica: A LIBS-Based Study

Abstract

The scientific evaluation of the antidiabetic efficacy of aqueous extract of Trichosanthes dioica fruits on streptozotocin-induced diabetic rats is being presented. The graded doses of the extract, viz., 500, 750, 1,000, and 1,250 mg/kg body weight (bw), were administered orally, and it was observed that the blood glucose concentration decreased in a dose-dependent manner. The dose of 1,000 mg/kg bw showed the maximum fall of 23.8% and 19.1% in blood glucose level (BGL) during fasting BGL and glucose tolerance test (GTT) studies, respectively, of nondiabetic rats. Whereas in the case of subdiabetic and mild diabetic models, the same dose showed reduction in BGL of 22.0% and 31.4% during GTT. The study also involves the first use of laser-induced breakdown spectroscopy as a sensitive analytical tool to detect the elemental profile responsible for the antidiabetic activity of aqueous extract of T. dioica fruits that exhibits the antidiabetic activity. High intensities of Ca, Mg, and Fe indicate large concentrations of these elements in the extract, since according to Boltzmann’s distribution law, intensities are directly proportional to concentrations. The higher concentrations of these glycemic elements, viz. Ca, Mg, and Fe, are responsible for the antidiabetic potential of T. dioica as well as other plant already reported by our research group.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. W.H. Gipsen, G.J. Biessels, Trends Neurosci 23, 542–549 (2000)

    Article  Google Scholar 

  2. R. Rahimi, S. Nikfar, B. Larijani, M. Abdollahi, Biomed Pharmacother 59, 365–373 (2005)

    Article  CAS  Google Scholar 

  3. H. King, R.E. Aubert, W.H. Herman, Diabetes Care 21, 1414–1431 (1998)

    Article  CAS  Google Scholar 

  4. C. Watala, J. Golanski, M.A. Boncler, R. Pietrucha, K. Gwozdzinski, Platelets 9, 315–327 (1993)

    Google Scholar 

  5. C. Day, Br J Nutr 80, 5–6 (1998)

    Article  CAS  Google Scholar 

  6. L. Pari, M. Latha, Gen Physiol Biophys 24, 13–26 (2005)

    CAS  Google Scholar 

  7. S.M. Sato, Toxicon 39, 603–613 (2001)

    Article  Google Scholar 

  8. A. Aliahmadi, N. Rahmani, M. Abdollahi, Int J Pharmacol 2, 268–279 (2006)

    Article  CAS  Google Scholar 

  9. X. Hu, J. Sato, Y. Yu, M. Oshida, G. Bajotto, Y. Sato, Diab Res Clin Pract 59, 103–111 (2003)

    Article  Google Scholar 

  10. W.L. Li, H.C. Zheng, J. Bukuru, N. De Kimpeb, J Ethnopharmacol 92, 1–21 (2004)

    Article  CAS  Google Scholar 

  11. Chakravarthy HM (1982) Bot Surv. India pp 136

  12. G. Sharma, M.C. Pant, Curr Sci 57, 1085–1087 (1988)

    Google Scholar 

  13. G. Sharma, A. Sarkar, S.B. Pachori, M.C. Pant, Indian Drug 27, 24–28 (1989)

    Google Scholar 

  14. K. Singh, Indian Hortic 34, 33–37 (1989)

    Google Scholar 

  15. S.K. Mukharjee, Indian scenario (Abstract-11), 2–4 September, Varanasi, India (1996)

  16. P.K. Rai, D. Jaiswal, S. Diwakar, G. Watal, Pharm Biol 46, 360–365 (2008)

    Article  Google Scholar 

  17. P.K. Rai, D. Jaiswal, R.K. Singh, R. Gupta, G. Watal, Pharm Biol 46, 894–899 (2008)

    Article  Google Scholar 

  18. D. Brahm, P. Trinder, Analyst 97, 142–45 (1972)

    Article  Google Scholar 

  19. L.H. Smith, Med Panam 42, 1549–1600 (1999)

    Google Scholar 

  20. G.S. Kumar, H. Nayak, S.M. Dharmesh, P.V. Salimath, J. Food, Compos Anal 19, 446–452 (2006)

    Article  CAS  Google Scholar 

  21. L. Pari, R. Saravanan, IJPT 4, 132–137 (2005)

    CAS  Google Scholar 

  22. M. Sabsabi, P. Cielo, Appl Spectrosc 49, 499–507 (1995)

    Article  CAS  Google Scholar 

  23. S.F. Picton, P.R. Flatt, N.H. Mcclenghan, Int J Exp Diabetes Res 2, 19–27 (2001)

    Article  CAS  Google Scholar 

  24. L.A. Fahiens, M.J. MacDonald, E.H. Kmiotek, R.J. Mertzo, C.M. Fahien, J. Biol, Chemistry 263, 13610–13614 (1988)

    Google Scholar 

  25. M.J. MacDonald, L.A. Fahien, Diabetes 37, 997–999 (1988)

    Article  CAS  Google Scholar 

  26. C. Alarcon, B. Wicksteed, Diabetes 51, 2496 (2002)

    Article  CAS  Google Scholar 

  27. W.S. Zawalich, K.C. Zawalich, Endocrinology 131, 649–654 (1992)

    Article  CAS  Google Scholar 

  28. A. Juan, G. Martinez, L. Maria, V. Penacarrillo, I. Valverde, F. Bjorkling, W.J. Malaisse, Eur J Pharmacol 32, 565–568 (1998)

    Google Scholar 

  29. A.G. Akkan, W.J. Malaisse, Diabet Res 23, 55–63 (1993)

    CAS  Google Scholar 

  30. P.K. Rai, N.K. Rai, A.K. Rai, G. Watal, Instrum Sci Tech 35, 507–522 (2007)

    Article  CAS  Google Scholar 

  31. P.K. Rai, D. Jaiswal, N.K. Rai, S. Pandhija, A.K. Rai, G. Watal, Lasers Med Sci 24, 761–768 (2009)

    Article  Google Scholar 

  32. Watal G, Sharma B, Rai PK, Jaiswal D, Rai DK, Rai NK, Rai AK (2009) Adv Prot Oxid Str (in press)

  33. P.K. Rai, D. Jaiswal, N.K. Rai, S. Pandhija, A.K. Rai, G. Watal, Food Biophys (2009). doi:10.1007/s11483-009-9123-x

    Google Scholar 

  34. N.K. Rai, P.K. Rai, D. Jaiswal, S. Pandhija, A.K. Rai, G. Watal, Food Biophys 4, 167–171 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to DRDO and NMPB, New Delhi, India, for providing the financial assistance. The first author PKR is thankful to ICMR for the award of senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geeta Watal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rai, P.K., Chatterji, S., Rai, N.K. et al. The Glycemic Elemental Profile of Trichosanthes dioica: A LIBS-Based Study. Food Biophysics 5, 17–23 (2010). https://doi.org/10.1007/s11483-009-9139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-009-9139-2

Keywords

  • Diabetes mellitus
  • Glycemic elements
  • LIBS
  • Streptozotocin
  • Albino Wistar rats
  • Trichosanthes dioica