Food Biophysics

, Volume 4, Issue 3, pp 191–198 | Cite as

Effect of a Pulsed Electric Field Treatment on Expression Behavior and Juice Quality of Chardonnay Grape

  • Nabil Grimi
  • Nikolai I. Lebovka
  • Eugene Vorobiev
  • Jean Vaxelaire
Original Article

Abstract

This work discusses the effects of pulsed electric field (PEF) application on low-pressure mechanical expression (the pressure maximum was 1 bar) and characteristics of juice produced from Chardonnay white grape. The experiments were carried out using a texture analyzer equipped with a PEF-treatment compression chamber operated at moderate electric field strength E = 400 V/cm. Two regimes of extraction were compared: expression at constant pressure (0.5 or 1 bar) and expression at progressive pressure increase (from 0 to 1 bar). This last one was chosen for the scale-down modeling of industrial grape pressing process. It was shown that PEF treatment at the electric field E = 400 V/cm and the total time of treatment tPEF ≈ 0.1 s allowed reaching of a high level of cell disintegration, Z ≈ 0.8. The energy consumption of PEF treatment corresponding to this level of disintegration was rather low and equal to W ≈ 15 kJ/kg. The PEF pretreatment resulted in juice yield increase from 67% to 75% (1 h of pressing at constant pressure of 1.0 bar). PEF treatment accelerated development of grape deformation. Decrease of difference between deformations of untreated and PEF-treated samples at high pressure and long-pressing time was observed. Statistical analysis showed no significant effect of PEF treatment on turbidity and content of polyphenols for the constant pressure regime. However, PEF treatment application resulted in elevation of the content of polyphenols (more than 15%) for the progressive pressure-increase regime.

Keywords

White grapes Pulsed electric fields Expression kinetics Turbidity Energy consumption Phenolic compounds 

References

  1. 1.
    H.G. Schwartzberg, Expression of fluid from biological solids. Separ Purif Methods 26, 1–213 (1997)CrossRefGoogle Scholar
  2. 2.
    R.S. Jackson, Wine Science, Principles, Practice, Perception, 2nd edn. (Elsevier, Amsterdam, 2000)Google Scholar
  3. 3.
    V. Cheynier, H. Fulcrand, Oxydation des Polyphénols Dans les Moûts et Les Vins, in Œnologie: Fondements Scientifiques et Technologiques, ed. by C. Flanzy (Lavoisier, Paris, 1998)Google Scholar
  4. 4.
    P. Ribereau-Gayon, D. Dubourdieu, D.B. Lonvaud, Handbook of Enology: The Microbiology of Wine and Vinifications, 2nd edn. (Wiley, Chichester, 2006)Google Scholar
  5. 5.
    V.L. Singleton, Grapes and Wine Phenolics: Background and Prospects, in Proceedings University California, Davis, Wine Grape Centennial Symposium, ed. by A.D. Webb (Department of Viticulture and Enology, University of California, Davis, 1982)Google Scholar
  6. 6.
    T. Brasseur, L. Angenot, I. Pinemail, C. Deby, Antiradicals, anti-lipid peroxidation and antioxidant properties of flavonoids. Bull. Liaison Groupe Polyphenols 13, 507 (1986)Google Scholar
  7. 7.
    J. Macheix, A. Fleurient, J. Billot, Fruit Phenolics (CRC, Boca Raton, 1990)Google Scholar
  8. 8.
    J. Loliger, The Use of Antioxidants in Foods, in Free Radicals and Food Additives; Auroma, 0. I, ed. by B. Halliwell (Taylor and Francis, London, 1991), p. 121Google Scholar
  9. 9.
    L.R. Dugand, Natural antioxidants, in Autooxidation in Food and Biological Systems, ed. by M.G. Simic, M. Karel (Plenum, New York, 1980), pp. 261–295Google Scholar
  10. 10.
    M. Pinelo, M. Rubilar, M. Jerez, J. Sineiro, J.M. Nunez, Effect of solvent, temperature and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food. Chem. 53, 2111–2117 (2005). doi:10.1021/jf0488110 CrossRefGoogle Scholar
  11. 11.
    Z.Y. Ju, L.R. Howard, Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. J. Agric. Food. Chem. 51, 5207–5213 (2003). doi:10.1021/jf0302106 CrossRefGoogle Scholar
  12. 12.
    D. Kammerer, A. Claus, A. Schieber, A. Carle, A novel process for the recovery of polyphenols from grape (Vitis vinifera L.) pomace. J Food Sci 70, 157–163 (2005)Google Scholar
  13. 13.
    V. Louli, N. Ragoussis, K. Magoulas, Recovery of phenolic antioxidants from wine industry by-products. Bioresour. Technol. 92, 201–208 (2004). doi:10.1016/j.biortech.2003.06.002 CrossRefGoogle Scholar
  14. 14.
    E. Vorobiev, A.B. Jemai, H. Bouzrara, N.I. Lebovka, M.I. Bazhal, Pulsed Electric Field Assisted Extraction of Juice from Food Plants, in Novel Food Processing Technologies, ed. by G.V. Barbosa-Canovas, M.P. Cano (Marcel Dekker, New York, 2004), pp. 105–130Google Scholar
  15. 15.
    E. Vorobiev, N.I. Lebovka, Extraction of intercellular components by pulsed electric fields, in Pulsed Electric Fields Technology for the Food Industry: Fundamentals and Applications, ed. by J. Raso, V. Heinz (Springer, New York, 2006), pp. 153–194Google Scholar
  16. 16.
    S. Toepfl, S.V. Heinz, D. Knorr, Applications of pulsed electric fields technology for the food industry, in Pulsed Electric Fields Technology for the Food Industry: Fundamentals and Applications, ed. by J. Raso, V. Heinz (Springer, New York, 2006), pp. 197–222Google Scholar
  17. 17.
    N. Grimi, I. Praporscic, N.I. Lebovka, E. Vorobiev, Selective extraction from carrot slices by pressing and washing enhanced by pulsed electric fields. Separ. Purif. Tech. 58, 267–273 (2007). doi:10.1016/j.seppur.2007.03.020 CrossRefGoogle Scholar
  18. 18.
    M.I. Bazhal, N.I. Lebovka, E. Vorobiev, Pulsed electric field treatment of apple tissue during compression for juice extraction. J. Food. Eng. 50, 129–139 (2001). doi:10.1016/S0260-8774(00)00235-1 CrossRefGoogle Scholar
  19. 19.
    M. Fincan, F. De Vito, P. Dejmek, Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. J. Food Eng. 64, 381–388 (2004). doi:10.1016/j.jfoodeng.2003.11.006 CrossRefGoogle Scholar
  20. 20.
    M. Corrales, S. Toepfl, P. Butz, D. Knorr, B. Tauscher, Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innovative Food Sci. Emerg. Technol. 9, 85–91 (2008). doi:10.1016/j.ifset.2007.06.002 CrossRefGoogle Scholar
  21. 21.
    N. López, E. Puértolas, S. Condón, I. Álvarez, J. Raso, Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innovative Food Science & Emerging Technologies 9(4), 477–482 (2008)CrossRefGoogle Scholar
  22. 22.
    N. Boussetta, N. Lebovka, E. Vorobiev, H. Adenier, C. Bedel-Cloutour, J.L. Lanoiselle, Electrically assisted extraction of soluble matter from Chardonnay grape skins for polyphenol recovery. J. Agric. Food. Chem 57(4), 1491–1497 (2009). doi:10.1021/j CrossRefGoogle Scholar
  23. 23.
    I. Praporscic, N. Lebovka, E. Vorobiev, M. Mietton-Peuchot, Pulsed electric field enhanced expression and juice quality of white grapes. Separ Purif Tech 52, 520–526 (2007). doi:10.1016/j.seppur.2006.06.007 CrossRefGoogle Scholar
  24. 24.
    N. Grimi, N. Lebovka, E. Vorobiev, J. Vaxelaire, Compressing behaviour and texture evaluation for potatoes pretreated by pulsed electric field. J Texture Stud 40, 208–224 (2009). doi:10.1111/j.1745-4603.2009.00177.x CrossRefGoogle Scholar
  25. 25.
    N.I. Lebovka, M.I. Bazhal, E. Vorobiev, Estimation of characteristic damage time of food materials in pulsed-electric fields. J. Food. Eng. 54, 337–346 (2002). doi:10.1016/S0260-8774(01)00220-5 CrossRefGoogle Scholar
  26. 26.
    F. De Vito, G. Ferrari, N.I. Lebovka, N.V. Shynkaryk, E. Vorobiev, Pulse duration and efficiency of soft cellular tissue disintegration by pulsed electric fields. Food Bioprocess Technol 1(4), 307–313 (2008)CrossRefGoogle Scholar
  27. 27.
    P. Ribéreau-Gayon, P. Sudraud, J.C. Milhé, A. Canbas, Recherche technologiques sur les composes phenoliques des vins rouges. Connaissance. Vigne. Vin. 2, 133–143 (1970)Google Scholar
  28. 28.
    B.K. Lukes, T.J. O’Brien, Improved methods for the determination of wort color and turbidity. J. Am. Soc. Brew. Chem. 41, 152–157 (1983)Google Scholar
  29. 29.
    N.I. Lebovka, I. Praporscic, E. Vorobiev, Enhanced expression of juice from soft vegetable tissues by pulsed electric fields: consolidation stages analysis. J. Food. Eng. 59, 309–317 (2003). doi:10.1016/S0260-8774(02)00472-7 CrossRefGoogle Scholar
  30. 30.
    I. Praporscic, S. Ghnimi, E. Vorobiev, Enhancement of pressing of sugar beet cuts by combined ohmic heating and pulsed electric field treatment. J. Food. Process Pres. 29, 378–389 (2005). doi:10.1111/j.1745-4549.2005.00035.x CrossRefGoogle Scholar
  31. 31.
    N.I. Lebovka, I. Praporscic, E. Vorobiev, Combined treatment of apples by pulsed electric fields and by heating at moderate temperature. J. Food Eng. 65, 211–217 (2004). doi:10.1016/j.jfoodeng.2004.01.017 CrossRefGoogle Scholar
  32. 32.
    M. Lecas, J.M. Brillouet, Cell wall composition of grape berry skins. Phytochem. 35, 1241–1243 (1994). doi:10.1016/S0031-9422(00)94828-3 CrossRefGoogle Scholar
  33. 33.
    G. Parodi, Yeasts, polysaccharides and quality of wines. Vignevini 31(7/8), 50–53 (2004)Google Scholar
  34. 34.
    G. Trägårdh, New Developments in Membrane Processing, in Food Processing: Recent Developments, ed. by A.D. Gaonkar (Elsevier, Amsterdam, 1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nabil Grimi
    • 1
  • Nikolai I. Lebovka
    • 1
    • 2
  • Eugene Vorobiev
    • 1
  • Jean Vaxelaire
    • 3
  1. 1.Département de Génie Chimique, Unité Transformations Intégrées de la Matière Renouvelable, Centre de Recherche de RoyallieuUniversité de Technologie de CompiègneCompiègne CedexFrance
  2. 2.Institute of Biocolloidal Chemistry named after F.D. OvcharenkoNAS of UkraineKyivUkraine
  3. 3.Energétique et Procédés, ENSGTIUniversité de Pau et des Pays de l’Adour- Laboratoire de ThermiquePau CedexFrance

Personalised recommendations