Abstract
Equilibrium phase diagrams of the ι-carrageenan/maltodextrin/water system have been established at potassium chloride (KCl) concentrations of 0.1, 0.2, and 0.3 M and 80, 85 and 90°C. All pseudo-binary phase diagrams of ι-carrageenan/maltodextrin mixtures suggested classic segregative phase separation. The binodal was heavily skewed toward the maltodextrin axis. The high asymmetry of the ι-carrageenan/maltodextrin/water phase diagram determined by the phase-volume-ratio method was consistent with the compositional analysis of phase-separated ι-carrageenan/maltodextrin samples and can be explained in terms of the Flory–Huggins interaction parameter, reflecting a higher water-binding ability of the charged ι-carrageenan than neutral maltodextrin. Increasing the concentration of ι-carrageenan-gel-promoting KCl from 0.1 to 0.3 M at 80°C enlarged the two-phase domain, whereas increasing temperature from 80 to 90°C at 0.3 M KCl enhanced biopolymer compatibility. The effects of salt concentration and temperature have been related to the differences in the Flory–Huggins interaction parameters of the two biopolymers with water as well as the helix formation of ι-carrageenan in the presence of KCl through the changes in the slopes of tie lines of phase-separated samples.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Notes
A “steeper” tie-line in the case of the pseudo-binary phase diagrams presented here actually corresponds to a less steep or more horizontal tie line in the true ternary phase diagram.
References
S. Kasapis, I.M. Al-Marhoobi, Biomacromolecules 6, 14–23 (2005). doi:10.1021/bm0400473
Y. Fang, L. Li, C. Inoue, L. Lundin, I. Appelqvist, Langmuir 22, 9532–9537 (2006). doi:10.1021/la061865e
S. Kasapis, Int. J. Food Sci. Technol. 30, 693–710 (1995)
E. Scholten, L.M.C. Sagis, E. van der Linden, Macromolecules 38, 3515–3518 (2005). doi:10.1021/ma047705w
L. Piculell, B. Lindman, Adv. Colloid Interface Sci. 41, 149–178 (1992). doi:10.1016/0001-8686(92)80011-L
M.T. Nickerson, A.T. Paulson, E. Wagar, R. Farnworth, S.M. Hodge, D. Rousseau, Food Hydrocoll. 20, 1072–1079 (2006). doi:10.1016/j.foodhyd.2005.12.003
M.F. Butler, Biomacromolecules 3, 676–683 (2002). doi:10.1021/bm025501m
S. Kasapis, E.R. Morris, I.T. Norton, M.J. Gidley, Carbohydr. Polym. 21, 249–259 (1993). doi:10.1016/0144-8617(93)90056-A
N. Lorén, A.-M. Hermansson, Int. J. Biol. Macromol. 27, 249–262 (2000). doi:10.1016/S0141-8130(00)00127-6
Paris L U.S. Patent 6,331,205 (2001)
Ong MH, Whitehouse AS U.S. Patent 6,592,926 (2003)
F. van de Velde, A.S. Antipova, H.S. Rollema, T.V. Burova, N.V. Grinberg, L. Pereira, P.M. Gilsenan, R.H. Tromp, B. Rudolph, V.Y. Grinberg, Carbohydr. Res. 340, 1113–1129 (2005). doi:10.1016/j.carres.2005.02.015
H. Nakashima, Y. Kido, N. Kobayashi, Y. Motoki, M. Neushul, N. Yamamoto, Antimicrob. Agents Chemother. 31, 1524–1528 (1987)
G. Marcelo, E. Saiz, M.P. Tarazona, Biophys. Chem. 113, 201–208 (2005). doi:10.1016/j.bpc.2004.09.005
M. Watase, K. Nishinari, Makromol. Chem. 188, 2213–2221 (1987). doi:10.1002/macp.1987.021880918
C.M. Durrani, D.A. Pryrtupa, A.M. Donald, A.H. Clark, Macromolecules 26, 981–987 (1993). doi:10.1021/ma00057a016
A. Pohu, V. Planchot, J.L. Putaux, P. Colonna, A. Buléon, Biomacromolecules 5, 1792–1798 (2004). doi:10.1021/bm049881i
C. Loret, S. Schumm, P.D.A. Pudney, W.J. Frith, P.J. Fryer, Food Hydrocoll. 19, 557–565 (2005). doi:10.1016/j.foodhyd.2004.10.030
G.R. Ziegler, S.S.H. Rizvi, J. Food Sci. 54, 430–436 (1989). doi:10.1111/j.1365-2621.1989.tb03100.x
V.I. Polyakov, V.Y. Grinberg, V.B. Tolstoguzov, Polym. Bull. 2, 757–760 (1980). doi:10.1007/BF00255893
M. Darder, M. López-Blanco, P. Aranda, F. Leroux, E. Ruiz-Hitzky, Chem. Mater. 17, 1969–1977 (2005). doi:10.1021/cm0483240
K. Bongaerts, S. Paoletti, B. Denef, K. Vanneste, F. Cuppo, H. Reynaers, Macromolecules 33, 8709–8719 (2000). doi:10.1021/ma000996y
K.B. Guiseley, N.F. Stanley, P.A. Whitehouse, Handbook of water-soluble gums and resins, in Carrageenan, ed. by R.L. Davidson (McGraw-Hill, New York, 1980)
A. Cesàro, F. Cuppo, D. Fabri, F. Sussich, Thermochim. Acta 328, 143–153 (1999). doi:10.1016/S0040-6031(98)00635-2
D.Z. Icoz, J.L. Kokini, Carbohydr. Polym. 70, 181–191 (2007). doi:10.1016/j.carbpol.2007.03.012
P.J. Flory, Principles of polymer chemistry (Cornell University Press, Ithaca, NY, 1953)
C.C. Hsu, J.M. Prausnitz, Macromolecules 7, 320–324 (1974). doi:10.1021/ma60039a012
H. Hinsken, W. Borchard, Colloid Polym. Sci. 273, 913–925 (1995). doi:10.1007/BF00660368
S. Radosta, F. Schierbaum, F. Reuther, H. Anger, Starch/Stärke 41, 395–401 (1989)
T.S. Nordmark, G.R. Ziegler, Food Hydrocoll. 14, 579–590 (2000). doi:10.1016/S0268-005X(00)00037-0
V. Normand, P.D.A. Pudney, P. Aymard, I.T. Norton, J. Appl. Polym. Sci. 77, 1465–1477 (2000). doi:10.1002/1097-4628(20000815) 77:7<1465::AID-APP8>3.0.CO;2-F
F. van de Velde, H.S. Rollema, N.V. Grinberg, T.V. Burova, V.Y. Grinberg, R.H. Tromp, Biopolymers 65, 299–312 (2002). doi:10.1002/bip.10250
L. Piculell, K. Bergfeldt, Biopolymer mixtures, in Factors determining phase behaviour of multi component polymer systems, ed. by S.E. Harding, S. Hill, J.R. Mitchell (Nottingham University Press, Manor Farm, Main Street, Thrumpton, Nottingham, NG11 0AX, UK, 1995)
K.S. Hossain, K. Miyanaga, H. Maeda, N. Nemoto, Biomacromolecules 2, 442–449 (2001). doi:10.1021/bm000117f
N. Lorén, A.-M. Hermansson, M.A.K. Williams, L. Lundin, T.J. Foster, C.D. Hubbard, A.H. Clark, I.T. Norton, E.T. Bergström, D.M. Goodall, Macromolecules 34, 289–297 (2001). doi:10.1021/ma0013051
L. Piculell, C. Rochas, Carbohydr. Res. 208, 127–138 (1990). doi:10.1016/0008-6215(90)80092-H
L. Piculell, S. Nilsson, P. Muhrbeck, Carbohydr. Polym. 18, 199–208 (1992). doi:10.1016/0144-8617(92)90064-W
V.Y. Grinberg, N.V. Grinberg, A.I. Usov, N.P. Shusharina, A.R. Khokhlov, K.G. de Kruif, Biomacromolecules 2, 864–873 (2001). doi:10.1021/bm0100460
Acknowledgments
The authors greatly appreciate the support under grant 2007-02656 of the National Research Initiative program 71.1, CSREES, USDA. The authors wish to acknowledge the valuable suggestions provide by the reviewers.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, X., Ziegler, G.R. Phase Behavior of the ι-Carrageenan/Maltodextrin/Water System at Different Potassium Chloride Concentrations and Temperatures. Food Biophysics 4, 119–125 (2009). https://doi.org/10.1007/s11483-009-9108-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11483-009-9108-9


