Skip to main content

Advertisement

Log in

Phase Behavior of the ι-Carrageenan/Maltodextrin/Water System at Different Potassium Chloride Concentrations and Temperatures

  • Original Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Equilibrium phase diagrams of the ι-carrageenan/maltodextrin/water system have been established at potassium chloride (KCl) concentrations of 0.1, 0.2, and 0.3 M and 80, 85 and 90°C. All pseudo-binary phase diagrams of ι-carrageenan/maltodextrin mixtures suggested classic segregative phase separation. The binodal was heavily skewed toward the maltodextrin axis. The high asymmetry of the ι-carrageenan/maltodextrin/water phase diagram determined by the phase-volume-ratio method was consistent with the compositional analysis of phase-separated ι-carrageenan/maltodextrin samples and can be explained in terms of the Flory–Huggins interaction parameter, reflecting a higher water-binding ability of the charged ι-carrageenan than neutral maltodextrin. Increasing the concentration of ι-carrageenan-gel-promoting KCl from 0.1 to 0.3 M at 80°C enlarged the two-phase domain, whereas increasing temperature from 80 to 90°C at 0.3 M KCl enhanced biopolymer compatibility. The effects of salt concentration and temperature have been related to the differences in the Flory–Huggins interaction parameters of the two biopolymers with water as well as the helix formation of ι-carrageenan in the presence of KCl through the changes in the slopes of tie lines of phase-separated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. A “steeper” tie-line in the case of the pseudo-binary phase diagrams presented here actually corresponds to a less steep or more horizontal tie line in the true ternary phase diagram.

References

  1. S. Kasapis, I.M. Al-Marhoobi, Biomacromolecules 6, 14–23 (2005). doi:10.1021/bm0400473

    Article  CAS  Google Scholar 

  2. Y. Fang, L. Li, C. Inoue, L. Lundin, I. Appelqvist, Langmuir 22, 9532–9537 (2006). doi:10.1021/la061865e

    Article  CAS  Google Scholar 

  3. S. Kasapis, Int. J. Food Sci. Technol. 30, 693–710 (1995)

    CAS  Google Scholar 

  4. E. Scholten, L.M.C. Sagis, E. van der Linden, Macromolecules 38, 3515–3518 (2005). doi:10.1021/ma047705w

    Article  CAS  Google Scholar 

  5. L. Piculell, B. Lindman, Adv. Colloid Interface Sci. 41, 149–178 (1992). doi:10.1016/0001-8686(92)80011-L

    Article  CAS  Google Scholar 

  6. M.T. Nickerson, A.T. Paulson, E. Wagar, R. Farnworth, S.M. Hodge, D. Rousseau, Food Hydrocoll. 20, 1072–1079 (2006). doi:10.1016/j.foodhyd.2005.12.003

    Article  CAS  Google Scholar 

  7. M.F. Butler, Biomacromolecules 3, 676–683 (2002). doi:10.1021/bm025501m

    Article  CAS  Google Scholar 

  8. S. Kasapis, E.R. Morris, I.T. Norton, M.J. Gidley, Carbohydr. Polym. 21, 249–259 (1993). doi:10.1016/0144-8617(93)90056-A

    Article  CAS  Google Scholar 

  9. N. Lorén, A.-M. Hermansson, Int. J. Biol. Macromol. 27, 249–262 (2000). doi:10.1016/S0141-8130(00)00127-6

    Article  Google Scholar 

  10. Paris L U.S. Patent 6,331,205 (2001)

  11. Ong MH, Whitehouse AS U.S. Patent 6,592,926 (2003)

  12. F. van de Velde, A.S. Antipova, H.S. Rollema, T.V. Burova, N.V. Grinberg, L. Pereira, P.M. Gilsenan, R.H. Tromp, B. Rudolph, V.Y. Grinberg, Carbohydr. Res. 340, 1113–1129 (2005). doi:10.1016/j.carres.2005.02.015

    Article  Google Scholar 

  13. H. Nakashima, Y. Kido, N. Kobayashi, Y. Motoki, M. Neushul, N. Yamamoto, Antimicrob. Agents Chemother. 31, 1524–1528 (1987)

    CAS  Google Scholar 

  14. G. Marcelo, E. Saiz, M.P. Tarazona, Biophys. Chem. 113, 201–208 (2005). doi:10.1016/j.bpc.2004.09.005

    Article  CAS  Google Scholar 

  15. M. Watase, K. Nishinari, Makromol. Chem. 188, 2213–2221 (1987). doi:10.1002/macp.1987.021880918

    Article  CAS  Google Scholar 

  16. C.M. Durrani, D.A. Pryrtupa, A.M. Donald, A.H. Clark, Macromolecules 26, 981–987 (1993). doi:10.1021/ma00057a016

    Article  CAS  Google Scholar 

  17. A. Pohu, V. Planchot, J.L. Putaux, P. Colonna, A. Buléon, Biomacromolecules 5, 1792–1798 (2004). doi:10.1021/bm049881i

    Article  CAS  Google Scholar 

  18. C. Loret, S. Schumm, P.D.A. Pudney, W.J. Frith, P.J. Fryer, Food Hydrocoll. 19, 557–565 (2005). doi:10.1016/j.foodhyd.2004.10.030

    Article  CAS  Google Scholar 

  19. G.R. Ziegler, S.S.H. Rizvi, J. Food Sci. 54, 430–436 (1989). doi:10.1111/j.1365-2621.1989.tb03100.x

    Article  Google Scholar 

  20. V.I. Polyakov, V.Y. Grinberg, V.B. Tolstoguzov, Polym. Bull. 2, 757–760 (1980). doi:10.1007/BF00255893

    Article  CAS  Google Scholar 

  21. M. Darder, M. López-Blanco, P. Aranda, F. Leroux, E. Ruiz-Hitzky, Chem. Mater. 17, 1969–1977 (2005). doi:10.1021/cm0483240

    Article  CAS  Google Scholar 

  22. K. Bongaerts, S. Paoletti, B. Denef, K. Vanneste, F. Cuppo, H. Reynaers, Macromolecules 33, 8709–8719 (2000). doi:10.1021/ma000996y

    Article  CAS  Google Scholar 

  23. K.B. Guiseley, N.F. Stanley, P.A. Whitehouse, Handbook of water-soluble gums and resins, in Carrageenan, ed. by R.L. Davidson (McGraw-Hill, New York, 1980)

    Google Scholar 

  24. A. Cesàro, F. Cuppo, D. Fabri, F. Sussich, Thermochim. Acta 328, 143–153 (1999). doi:10.1016/S0040-6031(98)00635-2

    Article  Google Scholar 

  25. D.Z. Icoz, J.L. Kokini, Carbohydr. Polym. 70, 181–191 (2007). doi:10.1016/j.carbpol.2007.03.012

    Article  CAS  Google Scholar 

  26. P.J. Flory, Principles of polymer chemistry (Cornell University Press, Ithaca, NY, 1953)

    Google Scholar 

  27. C.C. Hsu, J.M. Prausnitz, Macromolecules 7, 320–324 (1974). doi:10.1021/ma60039a012

    Article  CAS  Google Scholar 

  28. H. Hinsken, W. Borchard, Colloid Polym. Sci. 273, 913–925 (1995). doi:10.1007/BF00660368

    Article  CAS  Google Scholar 

  29. S. Radosta, F. Schierbaum, F. Reuther, H. Anger, Starch/Stärke 41, 395–401 (1989)

    Article  CAS  Google Scholar 

  30. T.S. Nordmark, G.R. Ziegler, Food Hydrocoll. 14, 579–590 (2000). doi:10.1016/S0268-005X(00)00037-0

    Article  CAS  Google Scholar 

  31. V. Normand, P.D.A. Pudney, P. Aymard, I.T. Norton, J. Appl. Polym. Sci. 77, 1465–1477 (2000). doi:10.1002/1097-4628(20000815) 77:7<1465::AID-APP8>3.0.CO;2-F

    Article  CAS  Google Scholar 

  32. F. van de Velde, H.S. Rollema, N.V. Grinberg, T.V. Burova, V.Y. Grinberg, R.H. Tromp, Biopolymers 65, 299–312 (2002). doi:10.1002/bip.10250

    Article  Google Scholar 

  33. L. Piculell, K. Bergfeldt, Biopolymer mixtures, in Factors determining phase behaviour of multi component polymer systems, ed. by S.E. Harding, S. Hill, J.R. Mitchell (Nottingham University Press, Manor Farm, Main Street, Thrumpton, Nottingham, NG11 0AX, UK, 1995)

    Google Scholar 

  34. K.S. Hossain, K. Miyanaga, H. Maeda, N. Nemoto, Biomacromolecules 2, 442–449 (2001). doi:10.1021/bm000117f

    Article  CAS  Google Scholar 

  35. N. Lorén, A.-M. Hermansson, M.A.K. Williams, L. Lundin, T.J. Foster, C.D. Hubbard, A.H. Clark, I.T. Norton, E.T. Bergström, D.M. Goodall, Macromolecules 34, 289–297 (2001). doi:10.1021/ma0013051

    Article  Google Scholar 

  36. L. Piculell, C. Rochas, Carbohydr. Res. 208, 127–138 (1990). doi:10.1016/0008-6215(90)80092-H

    Article  CAS  Google Scholar 

  37. L. Piculell, S. Nilsson, P. Muhrbeck, Carbohydr. Polym. 18, 199–208 (1992). doi:10.1016/0144-8617(92)90064-W

    Article  CAS  Google Scholar 

  38. V.Y. Grinberg, N.V. Grinberg, A.I. Usov, N.P. Shusharina, A.R. Khokhlov, K.G. de Kruif, Biomacromolecules 2, 864–873 (2001). doi:10.1021/bm0100460

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the support under grant 2007-02656 of the National Research Initiative program 71.1, CSREES, USDA. The authors wish to acknowledge the valuable suggestions provide by the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory R. Ziegler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Ziegler, G.R. Phase Behavior of the ι-Carrageenan/Maltodextrin/Water System at Different Potassium Chloride Concentrations and Temperatures. Food Biophysics 4, 119–125 (2009). https://doi.org/10.1007/s11483-009-9108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-009-9108-9

Keywords