Skip to main content

Advertisement

Log in

Characterization of Antimicrobial-bearing Liposomes by ζ-Potential, Vesicle Size, and Encapsulation Efficiency

  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Liposome entrapment may improve activity of protein or polypeptide antimicrobials against a variety of microorganisms. In this study, ability of liposomes to withstand exposure to environmental and chemical stresses typically encountered in foods and food processing operations were tested. Liposomes consisting of distearoylphosphatidylcholine (PC) and distearoylphosphatidylglycerol (PG), with 0, 5, or 10 μg/ml of the antimicrobial peptide nisin entrapped, were exposed to elevated temperatures (25–75 °C) and a range of pH (5.5–11.0). Ability of liposomes to maintain integrity was assessed by measuring the encapsulation efficiency (EE), ζ-potential, and particle size distribution of liposomes. Distearoylphosphatidylcholine, PC/PG 8:2, and PC/PG 6:4 (mole fraction) liposomes retained between ~70–90% EE despite exposure to elevated temperature and alkaline or acidic pH. Particle size of liposomes averaged between 100 and 240 nm depending on liposome preparation. Liposomal surface charge depended primarily on phospholipid composition and changed little with inclusion of nisin. Surface charge was not affected by temperature for PC and PC/PG 8:2 but decreased for PC/PG 6:4 liposomes. Our results suggest that liposomes containing nisin may be suitable for use as antimicrobial-active ingredients in low- or high-pH foods subjected to moderate heat treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. S.S. Chrai, R. Murari and I. Ahmad, Biopharm-Appl T Bio 15, 40 (2002).

    CAS  Google Scholar 

  2. R.L. Juliano, Trends Pharmacol Sci 2, 39 (1981).

    Article  CAS  Google Scholar 

  3. T.M. Allen and L.G. Cleland, Biochim Biophys Acta 597, 418 (1980).

    Article  CAS  Google Scholar 

  4. M.C. Taira, N.S. Chiaramoni, K.M. Pecuch and S. Alonso-Romanowski, Drug Deliv 11, 123 (2004).

    Article  CAS  Google Scholar 

  5. K. Makino, T. Yamada, M. Kimura, T. Oka, H. Ohshima and T. Kondo, Biophys Chemist 41, 175 (1991).

    Article  CAS  Google Scholar 

  6. R.R.C. New, In: Liposomes: A Practical Approach, edited by R.R.C. New (Oxford University Press, New York, NY 1990), p. 33.

    Google Scholar 

  7. J.C. Shah, Y. Sadhale and D.M. Chilukuri, Adv Drug Deliv Rev 47, 229 (2001).

    Article  CAS  Google Scholar 

  8. J. Lasch, V. Weissig and M. Brandl, In: Liposomes: A Practical Approach, edited by V.P. Torchilin and V. Weissig (Oxford University Press, New York, NY 2003), p. 3.

    Google Scholar 

  9. T.M. Taylor, P.M. Davidson, B.D. Bruce and J. Weiss, J Agric Food Chem 53, 8722 (2005).

    Article  CAS  Google Scholar 

  10. B.F. Gibbs, S. Kermasha, I. Alli and C.N. Mulligan, Int J Food Sci Nutr 50, 213 (1999).

    Google Scholar 

  11. R.-O. Benech, E.E. Kheadr, R. Laridi, C. Lacroix and I. Fliss, Appl Environ Microbiol 68, 3683 (2002).

    Article  CAS  Google Scholar 

  12. R.-O. Benech, E.E. Kheadr, C. Lacroix and I. Fliss, Appl Environ Microbiol 68, 5607 (2002).

    Article  CAS  Google Scholar 

  13. L.M. Were, B. Bruce, P.M. Davidson and J. Weiss, J Food Prot 67, 922 (2004).

    CAS  Google Scholar 

  14. L.M. Were, B.D. Bruce, P.M. Davidson and J. Weiss, J Agric Food Chem 51, 8073 (2003).

    Article  CAS  Google Scholar 

  15. J.M. Jay, M.J. Loessner and D.A. Golden, Modern Food Microbiology (Springer, New York, NY 2005), p. 301.

    Google Scholar 

  16. E.A. Johnson and A.E. Larson, In: Antimicrobials in Foods, edited by P.M. Davidson, J.N. Sofos and A.L. Branen (CRC Press, New York, NY 2005), p. 361.

    Google Scholar 

  17. J.S. Boland, P.M. Davidson, B. Bruce and J. Weiss, J Food Prot 67, 285 (2004).

    CAS  Google Scholar 

  18. J.K. Branen and P.M. Davidson, Int J Food Microbiol 90, 63 (2004).

    Article  CAS  Google Scholar 

  19. D.-S. Jung, F.W. Bodyfelt and M.A. Daeschel, J Dairy Sci 75, 387 (1992).

    Article  CAS  Google Scholar 

  20. L.V. Thomas and J. Delves-Broughton, In: Antimicrobials in Food, edited by P.M. Davidson, J.N. Sofos and A.L. Branen (CRC Press, New York, NY 2005), p. 237.

    Google Scholar 

  21. J. Delves-Broughton, Food Technol 44, 110 (1990).

    Google Scholar 

  22. P. Pinnaduwage and B.D. Bruce, J Biol Chem 271, 32907 (1996).

    Article  CAS  Google Scholar 

  23. J. Tramer and G.G. Fowler, J Sci Food Agric 15, 522–528 (1964).

    Article  CAS  Google Scholar 

  24. Y.-F. Hsieh, T.-L. Chen, Y.-T. Wang, J.-H. Chang and H.-M. Chang, J Food Sci 67, 2808 (2002).

    Article  CAS  Google Scholar 

  25. H. Kitano, Y. Akatsuka and N. Ise, Macromolecules 24, 42 (1991).

    Article  CAS  Google Scholar 

  26. Y.P. Zhang, R.N. Lewis and R.N. McElhaney, Biophys J 72, 779 (1997).

    CAS  Google Scholar 

  27. E.J. Findlay and P.G. Barton, Biochemistry 17, 2400 (1978).

    Article  CAS  Google Scholar 

  28. T. Taylor, P.M. Davidson, B. Bruce and J. Weiss, Crit Rev Food Sci Nutr 45, 587 (2005).

    Article  CAS  Google Scholar 

  29. D.J. McClements, Food Emulsions: Principles, Practices, and Techniques (CRC Press, Boca Raton, FL 2005).

    Google Scholar 

  30. R. Willumeit, M. Kumpugdee, S.S. Funari, K. Lohner, B.P. Navas, K. Brandenburg, S. Linser and J. Andra, Biochim Biophys Acta 1669, 125 (2005).

    Article  CAS  Google Scholar 

  31. Y.-Z. Huang, J.-Q. Gao, W.-Q. Liang and S. Nakagawa, Biol Pharm Bull 28, 387 (2005).

    Article  CAS  Google Scholar 

  32. R.M. Straubinger, N. Duzgunes and D. Papahadjopoulos, FEBS Lett 179, 148 (1985).

    Article  CAS  Google Scholar 

  33. S.-C. Lee, H.-G. Yuk, D.-H. Lee, K.-E. Lee, Y.-I. Ludescher and R.D. Ludescher, J Biochem Mol Biol 35, 358 (2002).

    CAS  Google Scholar 

  34. R. El-Jastimi, K. Edwards and M. Lafleur, Biophys J 77, 842 (1999).

    CAS  Google Scholar 

  35. F.H. Gao, T. Abee and W.N. Konings, Appl Environ Microbiol 57, 2164 (1991).

    CAS  Google Scholar 

  36. C. Van Kraau, E. Breukink, H.S. Rollema, R. Siezen, R.A. Demel, B. De Kruijkk and O.P. Kuipers, Eur J Biochem 247, 114 (1997).

    Article  Google Scholar 

  37. A.J.M. Driessen, H.W. van den Hooven, W. Kuiper, M. van de Kamp, H.-G. Sahl, R.N.H. Konings and W.N. Konings, Biochemistry 34, 1606 (1995).

    Article  CAS  Google Scholar 

  38. E. Breukink and B. de Kruijff, Biochim Biophys Acta 1462, 223 (1999).

    Article  CAS  Google Scholar 

  39. W. Liu and J.N. Hansen, Appl Environ Microbiol 56, 2551 (1990).

    CAS  Google Scholar 

  40. E. Breukink, P. Ganz, B. De Kruijff and J. Seelig, Biochemistry 39, 10247 (2000).

    Article  CAS  Google Scholar 

  41. J.R. Wiener, R.R. Wagner and E. Freire, Biochemistry 22, 6117 (1983).

    Article  CAS  Google Scholar 

  42. G. Yohannes, K.-H. Pystynen, M.-L. Riekkola and S.K. Wiedmer, Anal Chim Acta 560, 50–56 (2006).

    Article  CAS  Google Scholar 

  43. R. Laridi, E.E. Kheadr, R.-O. Benech, J.C. Vuillemard, C. Lacroix and I. Fliss, Int Dairy J 13, 325 (2003).

    Article  CAS  Google Scholar 

  44. T.M. Bayerl and M. Bloom, Biophys J 58, 357 (1990).

    Article  CAS  Google Scholar 

  45. D.B. Fenske and P.R. Cullis, Biophys J 64, 1482 (1993).

    CAS  Google Scholar 

  46. B.B. Bonev, W.C. Chan, B.W. Bycroft, G.C.K. Roberts and A. Watts, Biochemistry 39, 11425 (2000).

    Article  CAS  Google Scholar 

  47. R. El-Jastimi and M. Lafleur, Biochim Biophys Acta 1324, 151 (1997).

    Article  CAS  Google Scholar 

  48. R. El-Jastimi and M. Lafleur, Biochim Biophys Acta 1418, 97 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by a USDA NRI grant (USDA NRI 2004-35201-15358) and the Massachusetts and Tennessee Experiment Station (Hatch MAS 00911 and TEN 00263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, T.M., Gaysinsky, S., Davidson, P.M. et al. Characterization of Antimicrobial-bearing Liposomes by ζ-Potential, Vesicle Size, and Encapsulation Efficiency. Food Biophysics 2, 1–9 (2007). https://doi.org/10.1007/s11483-007-9023-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-007-9023-x

Keywords

Navigation