Skip to main content

Advertisement

Log in

Biofilms: At the Interface between Biophysics and Microbiology

  • Review
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This article highlights the role of biophysical principles in biofilm growth and propagation in food environments, an area that is of increasing concern to food processors due to the high resistance of biofilms to conventional remediation methodologies. First, the general characteristics of biofilms are discussed including their structure and physiological characteristics. Transfer and propagation mechanisms consisting of attachment followed by growth and subsequent detachment are reviewed. General growth models that are currently used in laboratories focusing on biofilm research are compared and emerging characterization techniques are discussed. An overview over current practices and techniques to remediate biofilms in a variety of environments is given. Remediation techniques that are reviewed include application of sanitizers and detergents. Finally, future research needs are briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. T. Moretro and S. Langsrud, Listeria monocytogenes: biofilm formation and persistence in food-processing environments. Biofilms 1, 107 (2004).

    Article  Google Scholar 

  2. R.M. Donlan, Biofilms: microbial life on surfaces. Emerg Infect Dis 8, 881 (2002).

    PubMed  Google Scholar 

  3. C.A. Fux, J.W. Costerton and P.S. Stewart et al., Survival strategies of infectious biofilms. Trends Microbiol 13, 34 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. P. Stoodley, S. Wilson and L. Hall-Stoodley et al., Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol 67, 5608 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. K. Kierek-Pearson and E. Karatan, Biofilm development in bacteria. Adv Appl Microbiol 57, 79 (2005).

    PubMed  CAS  Google Scholar 

  6. R. Van Houdt and C.W. Michiels, Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol 156, 626 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. J.F. Frank, Microbial attachment to food and food contact surfaces. Adv Food Nutr Res 43, 319 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. C. Ganesh Kumar and S.K. Anand, Significance of microbial biofilms in food industry: a review. Intl J Food Microbiol 42, 9 (1998).

    Article  Google Scholar 

  9. S.K. Hood and E.A. Zottola, Adherence to stainless steel by foodborne microorganisms during growth in model food systems. Intl J Food Microbiol 37, 145 (1997).

    Article  CAS  Google Scholar 

  10. S. Wong, D. Street and S.I. Delgado et al., Recalls of foods and cosmetics due to microbial contamination reported to the U.S. Food and Drug Administration. J Food Prot 63, 1113 (2000).

    PubMed  CAS  Google Scholar 

  11. H.F. Jenkinson and H.M. Lappin-Scott, Biofilms adhere to stay. Trends Microbiol 9, 9 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. Y.H. An and R.J. Friedman, Laboratory methods for studies of bacterial adhesion. J Microbiol Methods 30, 141 (1997).

    Article  CAS  Google Scholar 

  13. R.J. Doyle, Microbial Growth in Biofilms—Part A: Developmental and Molecular Biological Aspects (Academic Press, San Diego, CA 2001).

    Google Scholar 

  14. G.A. O'Toole, H.B. Kaplan and R. Kolter, Biofilm formation as microbial development. Annu Rev Microbiol 54, 49 (2002).

    Article  Google Scholar 

  15. L.V. Poulsen, Microbial biofilm in food processing. Lebensm-Wiss Technol 32, 321 (1999).

    Article  CAS  Google Scholar 

  16. I.W. Sutherland, The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol 9, 222 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. K.Y. Kim and J.F. Frank, Effect of nutrients on biofilm formation by Listeria monocytogenes on stainless steel. J Food Prot 58, 24 (1995).

    Google Scholar 

  18. N.G. Marriott, Principles of Food Sanitation (Aspen Publishers, Gaithersburg, MD, 1999).

    Google Scholar 

  19. P. Sommer, C. Martin-Rouas and E. Mettler, Influence of the adherent population level on biofilm population, structure and resistance to chlorination. Food Microbiol 16, 503 (1999).

    Article  CAS  Google Scholar 

  20. A.E. Hodgson, S.M. Nelson and M.R.W. Brown et al., A simple in vitro model for growth control of bacterial biofilms. J Appl Bacteriol 79, 87 (1995).

    PubMed  CAS  Google Scholar 

  21. S.L. Kuchma and G.A. O'Toole, Surface-induced and biofilm-induced changes in gene expression. Curr Opin Biotechnol 11, 429 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. G.A. O'Toole and R. Kolter, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28, 449 (1998).

    Article  PubMed  Google Scholar 

  23. S. Sauer, A.K. Camper, G.D. Ehrlich, et al., Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184, 1140 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. J.F. Frank and R.A.N. Chmielewski, Effectiveness of sanitation with quaternary ammonium compoind or chlorine on stainless steel and other domestic food-preparation surfaces. J Food Prot 60, 43 (1997).

    PubMed  CAS  Google Scholar 

  25. S. Vatanyoopaisarn, A. Nazli and C.E.R. Dodd et al., Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel. Appl Environ Microbiol 66, 860 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. K.J. Bolton, C.E.R. Dodd and G.C. Mead et al., Chlorine resistance of strains fo Staphylococcus aureus isolated from poultry processing plants. Lett Appl Microbiol 6, 31 (1988).

    CAS  Google Scholar 

  27. C.K. Bower and M.A. Daeschel, Resistance reponses of microorganisms in food environments. Int J Food Microbiol 50, 33 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. R.M. Donlan and J.W. Costerton, Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15, 167 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. W.M. Dunne, Bacterial Adhesion: Seen any good biofilms lately? Clin Microbiol Rev 15, 155 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. J.F. Frank, R.A.N. Gillett and G.O. Ware, Association of Listeria spp. contamination in the dairy processing plant environment with the presence of staphylococci. J Food Prot 53, 928 (1990).

    Google Scholar 

  31. J.F. Frank and R.A. Koffi, Surface-adherent growth of Listeria monocytogenes is associated with increased resistance to surfactant sanitizers and heat. J Food Prot 53, 550 (1990).

    Google Scholar 

  32. M.W. LeChevallier, C.D. Cawthon and R.G. Lee, Inactivation of biofilm bacteria. Appl Environ Microbiol 54, 2492 (1988).

    PubMed  CAS  Google Scholar 

  33. J.C. Nickel and J.W. Costerton, Bacterial biofilms and catheters: A key to understanding bacterial straegies in catheter-associated urinary tract infection. Can J Infect Dis 3, 619 (1992).

    Google Scholar 

  34. G. Reid, C. Tieszer and R. Foerch et al., Adsoption of ciprofloxacin to urinary catheters and effect on subsequent bacterial adheion and survival. Colloid Surf B Biointerfaces 1, 9 (1993).

    Article  CAS  Google Scholar 

  35. E. Werner, F. Roe and A. Bugnicourt et al., Stratified growth in Pseudomonas areuginosa biofilms. Appl Environ Microbiol 70, 6188 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. S.E. Crampton, C. Gerke and F. Gotz, In: Methods in Enzymology, Vol. 336 Microbial Growth in Biofilms Part A. Developmental and Molecular Biological Aspects, edited by R.J. Doyle (San Diego, CA 2001), p. 239.

  37. G.M. Dunny and S.C. Winans, Cell–cell Signaling in Bacteria (ASM Press, Washington, DC 1999).

    Google Scholar 

  38. S. Moller, C. Sternberg and J.B. Andersen et al., In situ gene expression in mixed-cultures biofilms: evidence of metabolic interactions between community members. Appl Environ Microbiol 64, 721 (1998).

    PubMed  CAS  Google Scholar 

  39. A.N. Hassan, D.M. Birt and J.F. Frank, Behavior of Listeria monocytogenes in a Pseudomona putida biofilm on a condensate-forming surface. J Food Prot 67, 322 (2004).

    PubMed  Google Scholar 

  40. K.C. Sasahara and E.A. Zottola, Biofilm formation by Listeria monocytogenes utilizes a primary colonizing microorganism in flowing systems. J Food Prot 56, 1022 (1993).

    Google Scholar 

  41. V. Leriche and B. Carpentier, Limitation of adhesion and growth of Listeria monocytogenes on stainless steel surfaces by Staphylococcus sciuri biofilms. J Appl Microbiol 88, 594 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. D.E. Norwood and A. Gilmour, The differential adherence capabilities of two Listeria monocytogenes strains in monoculture and multispecies biofilms as function of temperature. Lett Appl Microbiol 33, 320 (2001).

    Article  PubMed  CAS  Google Scholar 

  43. M.S. Chae and H. Schraft, Cell viability of Listeria monocytogenes biofilms. Food Microbiol 18, 103 (2001).

    Article  CAS  Google Scholar 

  44. M.S. Chae and H. Schraft, Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains. Int J Food Microbiol 62, 103 (2000).

    Article  PubMed  CAS  Google Scholar 

  45. R.B. Tompkin, V.N. Scott and D.T. Bernard et al., Guidelines to prevent post-processing contamination from Listeria monocytogenes. Dairy Food Environ Sanit 19, 551 (1999).

    Google Scholar 

  46. M.C.M. van Loosdrecht, D. Eikelbook and A. Gjaltema et al., Biofilm structures. Water Sci Technol 32, 35 (1995).

    Article  Google Scholar 

  47. J. Wimpenny, W. Manz and U. Szewzyk, Heterogeneity in Biofilms. FEMS Microbiol Rev 24, 661 (2000).

    PubMed  CAS  Google Scholar 

  48. M.C.M. van Loosdrecht, C. Picioreanu and J.J. Heijnen, A more unifying hypthesis for biofilm structures. FEMS Microbiol Lett 24, 181 (1997).

    Google Scholar 

  49. L.B. Purevdorj-Gage and P. Stoodley, Biofilm structure, behaviour, and hydrodynamics. In: Microbial biofilms, edited by M. Ghannoum and G.A. O'Toole (ASM Press, Washington, DC 2004), p. 160.

    Google Scholar 

  50. K.W. Millsap, G. Reid and H.C. van der Mei et al., Adhesion of Lactobacillus species in urine and phosphate buffer to silicone rubber and glass under flow. Biomaterials 18, 87 (1996).

    Article  Google Scholar 

  51. M.A. Pereira, M. Kuehn and S. Wuertz et al., Effect of flow regime on the architecture of a Pseudomonas fluorescens biofilm. Biotechnol Bioeng 78, 164 (2002).

    Article  PubMed  CAS  Google Scholar 

  52. H.H.M. Rijnaarts, W. Norde and E.J. Bouwer et al., Bacterial adhesion under static and dynamic conditions. Appl Environ Microbiol 59, 3255 (1993).

    PubMed  CAS  Google Scholar 

  53. M. Fletcher, Bacterial attachement in aquatic environments: a diversity of surfaces and adhesion strategies. In: Bacterial Adhesion: Molecular and Ecological Diversity, edited by M. Fletcher (Wiley-Liss, New York 1996), p. 1.

    Google Scholar 

  54. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, San Diego, CA 1992).

    Google Scholar 

  55. A.M. James, Charge properties of microbial cell surfaces. In: Microbial Cell Surface Analysis—Structural and Physicochemical Methods, edited by N. Mozes, P.S. Handley, H.J. Busscher and P.G. Rouxhet (VCH Publishers, New York 1991), p. 221.

    Google Scholar 

  56. D.J. McClements, Food Emulsions: Principles, Practice and Techniques (CRC Press, Boca Raton, FL 1999).

    Google Scholar 

  57. D.R. Olivera, Physio-Chemical Aspects of Adhesion. In: Biofilms-Science and Technology, edited by L.F. Melo, T.R. Bott, M. Fletcher and B. Capdeville (Kluwer Academic Publishers, Dordecht, the Netherlands 1992).

    Google Scholar 

  58. H.J. Busscher, J. Sjollema and H.C. v.d. Mei, Relatie importance of surface free energy as a measure of hydrophobicity in bacterial adhesion to solid surfaces. In: Microbial Cell Surface Hydrophobicity, edited by R.J. Doyle and M. Rosenberg (ASM, Washington, DC 1990).

    Google Scholar 

  59. G. Reid, C. Tieszer and R. Foerch et al., Adsoption of ciprofloxacin to urinary catheters and effect on subsequent bacterial adheion and survival. Colloids Surf, B Biointerfaces 1, 9 (1993).

    CAS  Google Scholar 

  60. M.A. Assanta, D. Roy and D. Montpetit, Adhesion of Aeromonas hydrophila to water distribution systems pipes after different contact times. J Food Prot 61, 1321 (1998).

    PubMed  CAS  Google Scholar 

  61. J.B. Kaplan, M.F. Meyenhofer and D.H. Fine, Biofilm growth and detachment of Actinobacillus actinomycetemcomintans. J Bacteriol 185, 1399 (2003).

    Article  PubMed  CAS  Google Scholar 

  62. E. Scott and S.F. Bloomfield, The survival and transfer of microbiological contamination via cloths, hands and utensils. J Appl Bacteriol 68, 271 (1990).

    PubMed  CAS  Google Scholar 

  63. L.M. Smoot and M.D. Pierson, Influence of environmnetal stress on the kinetics and strength of attachement of Listeria monocytogenes Scott A to Buna-N rubber and stainless steel. J Food Prot 61, 1286 (1998).

    PubMed  CAS  Google Scholar 

  64. J. Josephsen and F.K. Vogensen, Identificaiton of three different plasmid-encoded restriciton/modification systems in Streptococcus lactis subsp. cremoris W56. FEMS Microbiol Lett 59, 161 (1989).

    Article  CAS  Google Scholar 

  65. R. Braindet, V. Leriche and B. Carpentier et al., Effects of the growth procedure on the surface hydrophbicity and Listeria monocytogenes cells and their adhesion to stainless steel. J Food Prot 62, 994 (1999).

    PubMed  Google Scholar 

  66. A.A. Mafu, D. Roy and J. Goulet et al., Characterization of physiochemical forces involved in adhesion of Listeria monocytogenes to surfaces. Appl Environ Microbiol 57, 1969 (1991).

    PubMed  CAS  Google Scholar 

  67. P. Chavant, B. Martinie and T. Meylheuc et al., Listeria monocytogenes L028: Surface physiochemical properties and ability to form biofilms at different temperatures and growth phases. Appl Environ Microbiol 68, 728 (2002).

    Article  PubMed  CAS  Google Scholar 

  68. G. Wirtanen and T. Mattila-Sandholm, Epifluorescence image analysis and cultivation of foodborn biofilm bacteria grown on stainless steel surfaces. J Food Prot 56, 678 (1993).

    Google Scholar 

  69. J. Azaredo and R. Oliveira, The role of exopolymers in the attachment of Sphingomonas paucimobilis. Biofouling 16, 59 (2000).

    Article  Google Scholar 

  70. H. Al-Makhlafi, J. McGuire and M. Daeschel, Influence of preabsorbed milk proteins on adhesion of Listeria monocytogenes to hydrophobic and hydrophilic silica surfases. Appl Environ Microbiol 60, 3560 (1994).

    PubMed  CAS  Google Scholar 

  71. H. Al-Makhlafi, A. Nasir and J. McGuire et al., Adhesion of Listeria monocytogenes to silica surfaces after suqential and competitive adsoption of bovine serum albumin and B-lactoglobulin Appl Environ Microbiol 61, 2013 (1995).

    PubMed  CAS  Google Scholar 

  72. L.-M. Barnes, M.F. Lo and M.R. Adams et al., Effect of milk proteins on adhesion of bacteria to stainless steel surfaces. Appl Environ Microbiol 65, 4543 (1999).

    PubMed  CAS  Google Scholar 

  73. D. Cunliffe, C.A. Smart and C. Alexander et al., Bacterial adesion at synthetic surfaces. Appl Environ Microbiol 65, 4995 (1999).

    PubMed  CAS  Google Scholar 

  74. J.W. Costerton, Overview of microbial biofilms. J Ind Microbiol 15, 137 (1995).

    Article  PubMed  CAS  Google Scholar 

  75. J.W. Costerton, K.J. Cheng and G.G. Geesey et al., Bacterial biofilms in nature and disease. Annu Rev Microbiol 41, 435 (1987).

    Article  PubMed  CAS  Google Scholar 

  76. I. Kapper, C.J. Rupp and R. Cargo et al., Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol Bioeng 80, 289 (2002).

    Article  PubMed  CAS  Google Scholar 

  77. B. Purevdorj, J.W. Costerton and P. Stoodley, Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68, 4457 (2002).

    Article  PubMed  CAS  Google Scholar 

  78. P.J. Herald and E.A. Zottola, Attachment of Listeria monocytogenes to stainless steel surfaces at various temperature and pH values. J Food Sci 53, 1549 (1988).

    Google Scholar 

  79. K.Y. Kim and J.F. Frank, Effect of growth nutrients on attachement of Listeria monocytogenes to stainless steel. J Food Prot 57, 720 (1994).

    CAS  Google Scholar 

  80. L.M. Smoot and M.D. Pierson, Effect of environmental stress on the ability of Listeria monocytogenes Scott A to attach to food contact surfaces. J Food Prot 61, 1293 (1998).

    PubMed  CAS  Google Scholar 

  81. A.G. Moltz and S.E. Martin, Formation of biofilms by Listeria monocytogenes under various growth conditions. J Food Prot 68, 92 (2005).

    PubMed  Google Scholar 

  82. S. Stepanovic, I. Cirkovic and L. Ranin et al., Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 38, 428 (2004).

    Article  PubMed  CAS  Google Scholar 

  83. A.A. Mafu, D. Roy and J. Goulet et al., Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene, and rubber surfaces after short contact times. J Food Prot 53, 742 (1990).

    CAS  Google Scholar 

  84. S. Wilson, M.A. Hamilton and G.C. Hamilton et al., Statistical quantification of detachment rates and size distributions of cell clumps form wild-type (PAO1) and cell signaling mutant (JP1) Pseudomonas aeuginosa biofilms. Appl Environ Microbiol 70, 5847 (2004).

    Article  PubMed  CAS  Google Scholar 

  85. C. Fux, S. Wilson and P. Stoodley, Detachment characteristics and oxacillin resitance of Staphylococcus aureus biofilm emboli in an in vitro catheter infection model. J Bacteriol 186, 4486 (2004).

    Article  PubMed  CAS  Google Scholar 

  86. B. Purevdorj-Gage, W.J. Costerton and P. Stoodley, Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology 151, 1569 (2005).

    Article  PubMed  CAS  Google Scholar 

  87. C.J. Rupp, C.A. Fux and P. Stoodley, Viscoelasticity of Staphylococcus aureus biofilms in responce to fluid shear allows resistance to detachment and facilitates rolling microation. Appl Environ Microbiol 71, 2175 (2005).

    Article  PubMed  CAS  Google Scholar 

  88. C. Rupp, S. Wilson and P. Stoodley, Staphylococcus aureus Biofilm Rolling Along the Lumen of a Glass Tube. (ASM MicrobeLibrary.org, 2002).

  89. S.M. Hunt, E.M. Werner and B. Huang et al., Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol 70, 7418 (2004).

    Article  PubMed  CAS  Google Scholar 

  90. L.K. Sawyer and S.W. Hermanowicz, Detachment of Aeromonas hydrophila and Pseudomonas aeruginosa due to variations in nutrient supply. Water Sci Technol 41, 139 (2000).

    CAS  Google Scholar 

  91. D.G. Allison, B. Ruiz and C. SanJose et al., Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett 167, 179 (1998).

    PubMed  CAS  Google Scholar 

  92. A. Boyd and A.M. Chakrabarty, Role of alginate lyase in cell detachment of Pseudomona aeruginosa. Appl Environ Microbiol 60, 2355 (1994).

    PubMed  CAS  Google Scholar 

  93. K.M. Thormann, R.M. Savilee and S. Shukla et al., Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol 187, 1014 (2005).

    Article  PubMed  CAS  Google Scholar 

  94. A.C. Lee Wong, Biofilms in food processing environments. J Dairy Sci 81, 2765 (1998).

    PubMed  Google Scholar 

  95. A.F. Merry, T.E. Miller and G. Findon et al., Touch contamination levels during anaesthetic procedures and their relationship to hand hygiene procedures: a clinical audit. Br J Anaesth 87, 291 (2001).

    Article  PubMed  CAS  Google Scholar 

  96. D.R. Patrick, G. Findon and T.E. Miller, Residual moisture determines the level of touch-contact-associated bacterial transfer following hand washing. Epidemiol Infect 119, 319 (1997).

    Article  PubMed  CAS  Google Scholar 

  97. S.A. Sattar, S. Springthorpe and S. Mani et al., Transfer of bacteria from fabrics to hands and other fabrics: development and application of a quantitative method using Staphylococcus aureus as a model. J Appl Bacteriol 90, 962 (2001).

    CAS  Google Scholar 

  98. G. Midelet and B. Carpentier, Transfer of microorganisms, including Listeria monocytogenes from various materials to beef. Appl Environ Microbiol 68, 4015 (2001).

    Article  CAS  Google Scholar 

  99. K. Dastorri and B. Makin, Adhesion measurements for electrostatic powder coating using drop test rig and virtual oscilloscope. J Electrost 51, 509 (2001).

    Article  Google Scholar 

  100. P. Stoodley, R. Cargo and C.J. Rupp et al., Biofilm material properties as related to shear induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29, 361 (2002).

    Article  PubMed  CAS  Google Scholar 

  101. P. Stoodley, D. deBeer and Z. Lewandowski, Liquid flow in biofilm systems. Appl Environ Microbiol 60, 2711 (1994).

    PubMed  CAS  Google Scholar 

  102. C. Picioreanu, M.C.M. van Loodstrecht and J.J. Heijnen, Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72, 205 (2001).

    Article  PubMed  CAS  Google Scholar 

  103. S.P. Cole, J. Harwood and R. Lee et al., Characterization of monospecies biofilm formation by Helicobacter pylori. J Bacteriol 186, 3124 (2004).

    Article  PubMed  CAS  Google Scholar 

  104. D. Djordjevic, M. Wiedmann and L.A. McLandsborough, Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68, 2950 (2002).

    Article  PubMed  CAS  Google Scholar 

  105. G. Ramage, K. VandeWalle and B.L. Wickes, et al., Characteristics of biofilm formation by Candida albicans. Rev Iber Micol 18, 163 (2001).

    CAS  Google Scholar 

  106. M. Augustin and T. Ali-Vehmas, Assessment of enzymatic cleaning agents and disinfectants against bacterial biofilms. J Pharmacol Pharm Sci 7, 55 (2004).

    CAS  Google Scholar 

  107. R.J.C. McLean, C.L. Bates and M.B. Barnes et al., Methods of studying biofilms. In: Microbial Biofilms, edited by M. Ghannoum and G.A. O'Toole (ASM Press, Washington, DC 2004), p. 379.

    Google Scholar 

  108. H. Ceri, M.E. Olson and C. Stremick et al., The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37, 1771 (1999).

    PubMed  CAS  Google Scholar 

  109. N. Cerca, G.B. Pier and M. Vilanova et al., Influence of batch or fed-batch growth on Staphylococcus epidermidis biofilm formation. Lett Appl Microbiol 39, 420 (2004).

    Article  PubMed  CAS  Google Scholar 

  110. J.N. Anderl, M.J. Franklin and P.S. Stewart, Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicilin and ciprofloxacin. Antimicrob Agents Chemother 44, 1818 (2000).

    Article  PubMed  CAS  Google Scholar 

  111. G. Borrielo, E. Werner and F. Roe et al., Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48, 2659 (2004).

    Article  PubMed  CAS  Google Scholar 

  112. E.J. Wentland, P.S. Stewart C.-T. Huang et al., Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm. Biotechnol Prog 12, 316 (1996).

    Article  PubMed  CAS  Google Scholar 

  113. X. Chen and P.S. Stewart, Biofilm removal caused by chemical treatments. Water Res 34, 4229 (2000).

    Article  CAS  Google Scholar 

  114. B.B. Christensen, C. Sternberg and J.B. Andersen et al., Molecular tools for the study of biofilm physiology. Methods Enzymol 310, 20 (1999).

    PubMed  CAS  Google Scholar 

  115. W.F. McCoy, J.D. Bryers and J. Robbins et al., Observations of fouling biofilm formation. Can J Microbiol 27, 910 (1981).

    Article  PubMed  CAS  Google Scholar 

  116. J.C. Nickel, I. Ruseska and J.B. Wright et al., Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27, 619 (1985).

    PubMed  CAS  Google Scholar 

  117. R.M. Donlan, R. Murga and L. Carson, Growing biofilms in intravenous fluids. In: Biofilms: The Good, the Bad, and the Ugly, edited by J. Wimpenny, P. Gilbert, J. Walker, M. Brading, and R. Bayston (Bioline, Cardiff, Wales, 1999), p. 23.

    Google Scholar 

  118. S. Okabe, T. Itoh and H. Satoh et al., Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl Environ Microbiol 65, 5107 (1999).

    PubMed  CAS  Google Scholar 

  119. R.M. Donlan, J.A. Piede and C.D. Heyes et al., Model system for growing and quantifying Streptococcus pneumonieae biofilms in situ and in real time. Appl Environ Microbiol 70, 4980 (2004).

    Article  PubMed  CAS  Google Scholar 

  120. R.M. Donlan, R. Murga and J. Carpenter et al., Monochloramine disinfection of biofilm-associated Legionella pneumophila in a potable water model system. In: Legionella, edited by R. Marre, Y.A. Kwaik, C. Bartlett, N.P. Cianciotto, B.S. Fiekds, M. Frosch, J. Hacker, and P.C. Lück (American Society for Microbiology, Washington, DC 2002).

    Google Scholar 

  121. D.M. Goeres, L.R. Loetterle and M.A. Hamilton et al., Statistical assessment of a laboratory method for growing biofilms. Microbiology 151, 757 (2005).

    Article  PubMed  CAS  Google Scholar 

  122. A.K. Camper, W.L. Jones and J.T. Hayes, Effect of growth conditions and substratum composition on the persistence of coliforms in mixed-population biofilms. Appl Environ Microbiol 62, 4014 (1996).

    PubMed  CAS  Google Scholar 

  123. L.M. Laurence and A. Gilmore, Characterization of Listeria monocytognes isolated form poultry products and from the poulty-processing envronment by random amplification of polymorphic DNA and multilocus enzyme electrophorsis. Appl Environ Microbiol 61, 2139 (1995).

    PubMed  Google Scholar 

  124. J.R. Knowles, S. Roller and D.B. Murray et al., Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica Serovar Typhymurium. Appl Environ Microbiol 71, 797 (2005).

    Article  PubMed  CAS  Google Scholar 

  125. J.L. Kadurugamuwa, L.V. Sin and J. Yu et al., Noninvasive optical imaging method to evaluate postantibiotic effects on biofilm infection in vivo. Antimicrob Agents Chemother 48, 2283 (2004).

    Article  PubMed  CAS  Google Scholar 

  126. I. Raad, W. Costerton and U. Sabharwal et al., Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis 168, 400 (1993).

    PubMed  CAS  Google Scholar 

  127. R.C. Hunter and T.J. Beveridge, Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71, 2501 (2005).

    Article  PubMed  CAS  Google Scholar 

  128. S.C.C. Foong and J.S. Dickson, Attachment of Listeria monocytogenes on ready-to-eat meats. J Food Prot 67, 456 (2004).

    PubMed  Google Scholar 

  129. P. Chavant, B. Gaillard-Martinie and M. Hébraud, Antimicrobial effects of sanitizers against planktonic and sessile Listeria monocytogenes cells according to the growth phase. FEMS Microbiol. Lett. 236, 241 (2004).

    PubMed  CAS  Google Scholar 

  130. B. Little and P. Wagner, An overview of microbiologically influenced corrosion of metals and alloys. Can J Microbiol 42, 367 (1996).

    Article  CAS  Google Scholar 

  131. J.R. Lawrence and T.R. Neu, Confocal laser scanning microscopy for analysis of microbial biofilms. Methods Enzymol 310, 131 (1999).

    Article  PubMed  CAS  Google Scholar 

  132. P.A. Suci, M.W. Mittelman and F.P. Yu et al., Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 38, 2125 (1994).

    PubMed  CAS  Google Scholar 

  133. D.E. Nivens, J.Q. Chambers and T.R. Anderson et al., Monitoring microbial adhesion and biolfilm formation by attenuated total reflection/Fourier transform infrared spectroscopy. J Microbiol Methods 17, 199 (1993).

    Article  Google Scholar 

  134. H.C. Flemming, J. Wingender and T. Griegbe et al., Physico-chemical properties of biofilms. In: Biofilms: Recent Advances in their Study and Control, edited by L.V. Evans (Harwood Academic Publishers, Amsterdam 2000), p. 19.

    Google Scholar 

  135. Z. Lewandowski, Structure and function of biofilms. In: Biofilms: Recent Advances in their Study and Control, edited by L. V. Evans (Harwood Academic Publishers, Amsterdam, 2000), Vol. 1–17.

    Google Scholar 

  136. R. Murga, J.M. Miller and R.M. Donlan, Biofilm formation by gram-negative bacteria on central venous catheter connectors: effect of conditioning films in a laboratory model. J Clin Microbiol 39, 2294 (2001).

    Article  PubMed  CAS  Google Scholar 

  137. P.S. Stewart, B.M. Peyton and W.J. Drury et al., Quantitative observations of heterogenesis in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 59, 327 (1993).

    PubMed  CAS  Google Scholar 

  138. T.C. Zhang and P.L. Bishop, Density, porosity, and pore structure of Biofilms. Water Res 28 (1994).

  139. H. Beyenal, C. Donovan and Z. Lewandowski et al., Three-dimensional biofilm structure quantification. J Microbiol Methods 59, 395 (2004).

    Article  PubMed  CAS  Google Scholar 

  140. S.W. Hermanowicz, U. Schindler and P.A. Wilderer, Fractal structure of biofilms: new tools for investigation of morphology. Water Sci Technol 32, 99 (1995).

    Article  Google Scholar 

  141. V.J.M. Allan, L.E. Macaskie and M.E. Callow, Development of a pH gradient within a biofilm is dependent upon the limiting nutrient. Biotechnol Lett 21, 407 (1999).

    CAS  Google Scholar 

  142. J.W. Costerton, Z. Lewandowski and D. DeBeer et al., Biofilms, the customized microniche. J Bacteriol 176, 2137 (1994).

    PubMed  CAS  Google Scholar 

  143. I.B. Beech, J.R. Smith and A.A. Steele et al., The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloids Surf, B Biointerfaces 23, 231 (2002).

    CAS  Google Scholar 

  144. P.J. Bremer, G.G. Geesey and B. Drake, Atomic force microscopy examination of the topography of hydrated bacterial biofilm on a copper surface. Curr Microbiol 24, 223 (1992).

    Article  CAS  Google Scholar 

  145. P.G. Rouxhet, N. Mozes and P.B. Dengis et al., Application of X-ray photoelectron spectroscopy to microorganisms. Colloids Surf, B Biointerfaces 2, 347 (1994).

    CAS  Google Scholar 

  146. X. Yang, H. Beyenal and G. Harkin et al., Quantifying biofilm structure using image analysis. J Microbiol Methods 39, 109 (2000).

    Article  PubMed  CAS  Google Scholar 

  147. A. Heydorn, A.T. Nielsen and M. Hentzer et al., Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146, 2395 (2000).

    PubMed  CAS  Google Scholar 

  148. C. Niu and E.S. Gilbert, Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 70, 6951 (2004).

    Article  PubMed  CAS  Google Scholar 

  149. C.J. Van Oss, R.J. Good and M.K. Chaudry, The role of van der Waals forces and hydrogen bonds in ‘hydrophobic interactions’ between biopolymers and low energy surfaces. J Colloid Interface Sci 111, 378 (1986).

    Article  Google Scholar 

  150. K. Triandafillu, D.J. Balazs and B.O. Aronsson et al., Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices. Biomaterials 24, 1507 (2003).

    Article  PubMed  CAS  Google Scholar 

  151. L.S. Stone and E.A. Zottala, Effect of cleaning and sanitizing on the attachment of Pseudomonas fragi to stainless steel. J Food Sci 50, 957 (1985).

    Google Scholar 

  152. S.E. Lentsch, Sanitizers for an effective cleaning program. In: Sanitation Notebook for the Seafood Industry, edited by G.J. Flick, C.L. Kassem, F. Huang, D.R. Ward, M.J. Thompson and C. Fletcher (Virginia Polytechnic Institute and State University Blacksburg, VA 1978), p. 11.

    Google Scholar 

  153. C.K. Bower, J. McGuire and M.A. Daeschel, The adhesion and detachment of bacteria and spores on food-contact surfaces. Trends Food Sci Technol 7, 152 (1996).

    Article  CAS  Google Scholar 

  154. R.M. Donlan and J.W. Costerton, Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15, 167 (2002).

    Article  PubMed  CAS  Google Scholar 

  155. R.M. Donlan, Biofilms: microbial life on surfaces. Emerg Infect Dis 8, 881 (2002).

    PubMed  Google Scholar 

  156. J.F. Frank and R.A. Koffi, Surface-adherent growth of Listeria monocytogenes is associated with increased resistance to surfactant sanitizers and heat. J Food Prot 53, 550 (1990).

    Google Scholar 

  157. J.C. Nickel and J.W. Costerton, Bacterial biofilms and catheters: A key to understanding bacterial strategies in catheter-associated urinary tract infection. Can J Infect Dis 3, 619 (1992).

    Google Scholar 

  158. H. Anwar, J.L. Strap and J.W. Costeron, Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother 36, 1347 (1992).

    PubMed  CAS  Google Scholar 

  159. T.S. Schwach and E.A. Zottola, Use of scanning eletron microscopy to demonstrate microbial attachment to beef and beef contact surfaces. J Food Sci 47, 1401 (1982).

    Google Scholar 

  160. S.H. Lee and J.F. Frank, Inactivation of surface-adherent Listeria monocytogenes hypochlorite and heat. J Food Prot 54, 4 (1991).

    CAS  Google Scholar 

  161. M.R.W. Brown and P. Gilbert, Sensitivity of biofilms to antimicrobial agents. J Appl Bacteriol 74, S87 (1993).

    Google Scholar 

  162. D.E. Jenkins, J.E. Schultz and A. Matin, Stravation-induced cross protection against heat or hydrogen peroxide challeneg of Escherichia coli. J Bacteriol 170, 3909 (1988).

    Google Scholar 

  163. D.J. Evans, D.G. Allison and M.R.W. Brown et al., Susceptibility of Pseudomonas aeruginos and Escherichia coli biofilms towards ciprofloxacin: Effect of specific growth rate. J Antimicrob Chemother 27, 177 (1991).

    PubMed  CAS  Google Scholar 

  164. P.S. Stewart, Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 38, 1052 (1994).

    PubMed  CAS  Google Scholar 

  165. P.S. Stewart, Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40, 2517 (1996).

    PubMed  CAS  Google Scholar 

  166. C.M. Stewart, M.B. Cole and J.D. Legan et al., Modeling the growth boundary of Staphylococcus aureus for risk assessment purposes. J Food Prot 64, 51 (2001).

    PubMed  CAS  Google Scholar 

  167. P.S. Stewart, J. Rayner and F. Roe et al., Biofilm penetration and disinfection efficiancy of alkaline hypochlorite and chlorsulfamates. J Appl Microbiol 91, 525 (2001).

    Article  PubMed  CAS  Google Scholar 

  168. C.M. Stewart, M.B. Cole and J.D. Legan et al., Staphylococcus aureus growth boundries: moving towards mechanistic predictive models based on soute-specific effects. Appl Environ Microbiol 68, 1864 (2002).

    Article  PubMed  CAS  Google Scholar 

  169. P.M. Davidson, Chemical Preservatives and Natural Antimicrobial Compounds. In: Food Microbiology: Fundamentals and Frontiers, edited by M.P. Doyle, L.R. Beuchat and T.J. Montville (American Society for Microbiology, Washington, DC 2001), p. 593.

    Google Scholar 

  170. P.M. Davidson and A.S. Naidu, Phytochemicals. In: Natural Food Antimicrobial Systems, edited by A.S. Naidu (CRC Press, Boca Raton, FL 2000).

    Google Scholar 

  171. E. Drenkard, Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5, 1213 (2003).

    Article  PubMed  CAS  Google Scholar 

  172. E. Le Magrex-Debar, J. Lemoine and M.-P. Gelle et al., Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int J Food Microbiol 55, 239 (2000).

    Article  PubMed  Google Scholar 

  173. J. Knowles and S. Roller, Efficacy of Chitosan, Carvacrol, and a Hydrogen Peroxide-Based Biocide against Foodborne Microorganisms in Suspension and Adhered to Stainless Steel. J Food Prot 64, 1542 (2001).

    PubMed  CAS  Google Scholar 

  174. W.M. Dunne, E.O. Mason and S.L. Kaplan, Diffusion of rifampin and vancomycin through a Staphylococcus epidermis biofilm. Antimicrob Agents Chemother 37, 2522 (1993).

    PubMed  CAS  Google Scholar 

  175. H. Kumon, K. Tomochika and T. Matunaga et al., A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharide. Microbiol Immunol 38, 615 (1994).

    PubMed  CAS  Google Scholar 

  176. P.S. Stewart, Diffusion in Biofilms. J Bacteriol 185, 1485 (2004).

    Article  CAS  Google Scholar 

  177. W.K. Whitekettle, Effects of surface-active chemicals on microbial adhesion. J Ind Microbiol 7, 105 (1991).

    Article  CAS  Google Scholar 

  178. E.P. Krysinski, L.J. Brown and T.J. Marchisello, Effect of cleaners and sanitizers on Listeria monocytogenes attached to product contact surfaces. J Food Prot 55, 246 (1992).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLandsborough, L., Rodriguez, A., Pérez-Conesa, D. et al. Biofilms: At the Interface between Biophysics and Microbiology. Food Biophysics 1, 94–114 (2006). https://doi.org/10.1007/s11483-005-9004-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-005-9004-x

Keywords

Navigation