Skip to main content

Advertisement

Log in

Melatonin Enhanced Microglia M2 Polarization in Rat Model of Neuro-inflammation Via Regulating ER Stress/PPARδ/SIRT1 Signaling Axis

  • Correspondence
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Neuro-inflammation involves distinct alterations of microglial phenotypes, containing nocuous pro-inflammatory M1-phenotype and neuroprotective anti-inflammatory M-phenotype. Currently, there is no effective treatment for modulating such alterations. M1/M2 marker of primary microglia influenced by Melatonin were detected via qPCR. Functional activities were explored by western blotting, luciferase activity, EMSA, and ChIP assay. Structure interaction was assessed by molecular docking and LIGPLOT analysis. ER-stress detection was examined by ultrastructure TEM, calapin activity, and ERSE assay. The functional neurobehavioral evaluations were used for investigation of Melatonin on the neuroinflammation in vivo. Melatonin had targeted on Peroxisome Proliferator Activated Receptor Delta (PPARδ) activity, boosted LPS-stimulated alterations in polarization from the M1 to the M2 phenotype, and thereby inhibited NFκB–IKKβ activation in primary microglia. The PPARδ agonist L-165,041 or over-expression of PPARδ plasmid (ov-PPARδ) showed similar results. Molecular docking screening, dynamic simulation approaches, and biological studies of Melatonin showed that the activated site was located at PPARδ (phospho-Thr256-PPARδ). Activated microglia had lowered PPARδ activity as well as the downstream SIRT1 formation via enhancing ER-stress. Melatonin, PPARδ agonist and ov-PPARδ all effectively reversed the above-mentioned effects. Melatonin blocked ER-stress by regulating calapin activity and expression in LPS-activated microglia. Additionally, Melatonin or L-165,041 ameliorated the neurobehavioral deficits in LPS-aggravated neuroinflammatory mice through blocking microglia activities, and also promoted phenotype changes to M2-predominant microglia. Melatonin suppressed neuro-inflammation in vitro and in vivo by tuning microglial activation through the ER-stress-dependent PPARδ/SIRT1 signaling cascade. This treatment strategy is an encouraging pharmacological approach for the remedy of neuro-inflammation associated disorders.

Graphical Abstract

Schematic of Proposed Mechanism for the role of Melatonin in Activated Microglia and neuro-inflammation Effects. LPS-induced ER Stress and Regulated PPARδ Expression, NFκB Phosphorylation, Subsequently Reduces SIRT1 Expression and then Triggers the Microglia Activation and Brain Damage. In the Present Study, we Provide the Evidence to Demonstrate that Melatonin Plays a Potential Protective role in Neuroprotective Effects through PPARδ/SIRT1 Pathway. In Addition, PPARδ Pharmacological Agonists L165041 also Possessed Similar Effects. These Results Suggest that the Activation of PPARδ/SIRT1 by Melatonin could Counteract the Detrimental Effect of LPS. Also, the Results Suggest Melatonin may Exert a Therapeutic Effect for Neuroinflammatory Disorders

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

The datasets applied during the current study are available on reasonable request. All data generated or analyzed during this study are included in this published article.

Abbreviations

ChIP:

Chromatin Immunoprecipitation Assay

ER Stress:

Endoplasmic Reticulum Stress

EMSA:

Electrophoretic Mobility Shift Assay

HFD:

High-Fat Diet

LPS:

Lipopolysaccharide

TEM:

Transmission Electron Microscope

ovPPAR:

δPPARδ plasmid

PPARδ:

Peroxisome Proliferator Activated Receptor Delta

PPRES:

PPAR Response Elements

qPCR:

Quantitative PCR

RXR:

Retinoic X Receptor

SIRT1:

Sirtuin 1

References

  • Aleshin S, Strokin M, Sergeeva M, Reiser G (2013) Peroxisome proliferator-activated receptor (PPAR)β/δ, a possible nexus of PPARα- and PPARγ-dependent molecular pathways in neurodegenerative diseases: review and novel hypotheses. Neurochem Int 63:322–330

    Article  CAS  PubMed  Google Scholar 

  • Ali T, Hao Q, Ullah N, Rahman SU, Shah FA, He K, Zheng C, Li W, Murtaza I, Li Y, Jiang Y, Tan Z, Li S (2020a) Melatonin Act as an antidepressant via attenuation of Neuroinflammation by Targeting Sirt1/Nrf2/HO-1 signaling. Front Mol Neurosci 13:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali T, Rahman SU, Hao Q, Li W, Liu Z, Ali Shah F, Murtaza I, Zhang Z, Yang X, Liu G, Li S (2020b) Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res 69:e12667

    Article  CAS  PubMed  Google Scholar 

  • An YQ, Zhang CT, Du Y, Zhang M, Tang SS, Hu M, Long Y, Sun HB, Hong H (2016) PPARδ agonist GW0742 ameliorates Aβ1-42-induced hippocampal neurotoxicity in mice. Metab Brain Dis 31:663–671

    Article  CAS  PubMed  Google Scholar 

  • Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, Bagriyanik A, Genc K, Genc S (2019) Melatonin attenuates LPS-Induced Acute Depressive-Like behaviors and Microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol 10:1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atri C, Guerfali FZ, Laouini D (2018) Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci 19(6):1801. https://doi.org/10.3390/ijms19061801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barroso E, del Valle J, Porquet D, Vieira Santos AM, Salvadó L, Rodríguez-Rodríguez R, Gutiérrez P, Anglada-Huguet M, Alberch J, Camins A, Palomer X, Pallàs M, Michalik L, Wahli W, Vázquez-Carrera M (2013) Tau hyperphosphorylation and increased BACE1 and RAGE levels in the cortex of PPARβ/δ-null mice. Biochim Biophys Acta 1832:1241–1248

    Article  CAS  PubMed  Google Scholar 

  • Bohatschek M, Kloss CU, Kalla R, Raivich G (2001) In vitro model of microglial deramification: ramified microglia transform into amoeboid phagocytes following addition of brain cell membranes to microglia-astrocyte cocultures. J Neurosci Res 64:508–522

    Article  CAS  PubMed  Google Scholar 

  • Brunmair B, Staniek K, Dörig J, Szöcs Z, Stadlbauer K, Marian V, Gras F, Anderwald C, Nohl H, Waldhäusl W, Fürnsinn C (2006) Activation of PPAR-delta in isolated rat skeletal muscle switches fuel preference from glucose to fatty acids. Diabetologia 49:2713–2722

    Article  CAS  PubMed  Google Scholar 

  • Carloni S, Favrais G, Saliba E, Albertini MC, Chalon S, Longini M, Gressens P, Buonocore G, Balduini W (2016) Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and miR-34a/silent information regulator 1 pathway. J Pineal Res 61:370–380

    Article  CAS  PubMed  Google Scholar 

  • Carloni S, Riparini G, Buonocore G, Balduini W (2017) Rapid modulation of the silent information regulator 1 by melatonin after hypoxia-ischemia in the neonatal rat brain. J Pineal Res 63(3). https://doi.org/10.1111/jpi.12434. Epub 2017 Aug 7

  • Chehaibi K, le Maire L, Bradoni S, Escola JC, Blanco-Vaca F, Slimane MN (2017) Effect of PPAR-β/δ agonist GW0742 treatment in the acute phase response and blood-brain barrier permeability following brain injury. Translational Research: J Lab Clin Med 182:27–48

    Article  CAS  Google Scholar 

  • Chen D, Dixon BJ, Doycheva DM, Li B, Zhang Y, Hu Q, He Y, Guo Z, Nowrangi D, Flores J, Filippov V, Zhang JH, Tang J (2018) IRE1α inhibition decreased TXNIP/NLRP3 inflammasome activation through mir-17-5p after neonatal hypoxic-ischemic brain injury in rats. J Neuroinflamm 15:32

    Article  Google Scholar 

  • Chhor V, Le Charpentier T, Lebon S, Oré MV, Celador IL, Josserand J, Degos V, Jacotot E, Hagberg H, Sävman K, Mallard C, Gressens P, Fleiss B (2013) Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun 32:70–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SI, Kim KS, Oh JY, Jin JY, Lee GH, Kim EK (2013) Melatonin induces autophagy via an mTOR-dependent pathway and enhances clearance of mutant-TGFBIp. J Pineal Res 54:361–372

    Article  CAS  PubMed  Google Scholar 

  • Choi SI, Lee E, Akuzum B, Jeong JB, Maeng YS, Kim TI, Kim EK (2017) Melatonin reduces endoplasmic reticulum stress and corneal dystrophy-associated TGFBIp through activation of endoplasmic reticulum-associated protein degradation. J Pineal Res 63(3). https://doi.org/10.1111/jpi.12426. Epub 2017 Jul 18

  • Chung SY, Han SH (2003) Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. J Pineal Res 34:95–102

    Article  CAS  PubMed  Google Scholar 

  • Daumas S, Halley H, Francés B, Lassalle JM (2005) Encoding, consolidation, and retrieval of contextual memory: differential involvement of dorsal CA3 and CA1 hippocampal subregions. Learn Mem (Cold Spring Harbor, NY) 12:375–382

    Article  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59

    Article  CAS  PubMed  Google Scholar 

  • González-Fernández B, Sánchez DI, Crespo I, San-Miguel B, de Urbina JO, González-Gallego J, Tuñón MJ (2018) Melatonin attenuates dysregulation of the circadian clock pathway in mice with CCl(4)-Induced fibrosis and human hepatic stellate cells. Front Pharmacol 9:556

    Article  PubMed  PubMed Central  Google Scholar 

  • Han L, Wang H, Li L, Li X, Ge J, Reiter RJ, Wang Q (2017) Melatonin protects against maternal obesity-associated oxidative stress and meiotic defects in oocytes via the SIRT3-SOD2-dependent pathway. J Pineal Res 63(3). https://doi.org/10.1111/jpi.12431. Epub 2017 Jul 18

  • Hardeland R (2017) Melatonin and the pathologies of weakened or dysregulated circadian oscillators. J Pineal Res 62(1).  https://doi.org/10.1111/jpi.12377. Epub 2016 Nov 24

  • Hardeland R (2014) Melatonin, noncoding RNAs, messenger RNA stability and epigenetics–evidence, hints, gaps and perspectives. Int J Mol Sci 15:18221–18252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardeland R (2018a) Melatonin and inflammation-story of a double-edged blade. J Pineal Res 65:e12525

    Article  PubMed  Google Scholar 

  • Hardeland R (2018b) Recent findings in Melatonin Research and their relevance to the CNS. Cent Nerv Syst Agents Med Chem 18:102–114

    Article  CAS  PubMed  Google Scholar 

  • Harvey LD, Yin Y, Attarwala IY, Begum G, Deng J, Yan HQ, Dixon CE, Sun D (2015) Administration of DHA reduces endoplasmic reticulum stress-associated inflammation and alters microglial or macrophage activation in traumatic brain injury. ASN Neuro 7(6):1759091415618969. https://doi.org/10.1177/1759091415618969. Print 2015 Nov-Dec

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K, Pache F, Stich O, Beume LA, Hümmert MW, Ringelstein M, Trebst C, Winkelmann A, Schwarz A, Buttmann M, Zimmermann H, Kuchling J, Franciotta D, Capobianco M, Siebert E et al (2016) MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflamm 13:280

    Article  Google Scholar 

  • Juge-Aubry C, Pernin A, Favez T, Burger AG, Wahli W, Meier CA, Desvergne B (1997) DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5’-flanking region. J Biol Chem 272:25252–25259

    Article  CAS  PubMed  Google Scholar 

  • Jurga AM, Paleczna M, Kuter KZ (2020) Overview of General and discriminating markers of Differential Microglia phenotypes. Front Cell Neurosci 14:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato H, Tanaka G, Masuda S, Ogasawara J, Sakurai T, Kizaki T, Ohno H, Izawa T (2015) Melatonin promotes adipogenesis and mitochondrial biogenesis in 3T3-L1 preadipocytes. J Pineal Res 59:267–275

    Article  CAS  PubMed  Google Scholar 

  • Kuo CC, Su HL, Chang TL, Chiang CY, Sheu ML, Cheng FC, Chen CJ, Sheehan J, Pan HC (2017) Prevention of Axonal Degeneration by Perineurium Injection of Mitochondria in a sciatic nerve crush Injury Model. Neurosurgery 80:475–488

    Article  PubMed  Google Scholar 

  • Le PH, Kuo CJ, Cheng HT, Wu RC, Chen TH, Lin CJ, Chiang KC, Hsu JT (2019) Melatonin attenuates Acute Pancreatitis-Induced liver damage through akt-dependent PPAR-γ pathway. J Surg Res 236:311–318

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Chawla A, Urbiztondo N, Liao D, Boisvert WA, Evans RM, Curtiss LK (2003) Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Sci (New York NY) 302:453–457

    Article  CAS  Google Scholar 

  • Lee I, Kesner RP (2004) Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus 14:301–310

    Article  PubMed  Google Scholar 

  • Lee I, Yoganarasimha D, Rao G, Knierim JJ (2004) Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430:456–459

    Article  CAS  PubMed  Google Scholar 

  • Leutgeb S, Leutgeb JK, Barnes CA, Moser EI, McNaughton BL, Moser MB (2005) Independent codes for spatial and episodic memory in hippocampal neuronal ensembles, vol 309. Science, New York, NY), pp 619–623

    Google Scholar 

  • Liu SH, Yang CN, Pan HC, Sung YJ, Liao KK, Chen WB, Lin WZ, Sheu ML (2010) IL-13 downregulates PPAR-gamma/heme oxygenase-1 via ER stress-stimulated calpain activation: aggravation of activated microglia death. Cellular and molecular life sciences: CMLS 67:1465–1476

    Article  CAS  PubMed  Google Scholar 

  • Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM (2008) AMPK and PPARdelta agonists are exercise mimetics. Cell 134:405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173:649–665

    Article  CAS  PubMed  Google Scholar 

  • Pan HC, Yang CN, Hung YW, Lee WJ, Tien HR, Shen CC, Sheehan J, Chou CT, Sheu ML (2013) Reciprocal modulation of C/EBP-α and C/EBP-β by IL-13 in activated microglia prevents neuronal death. Eur J Immunol 43:2854–2865

    Article  CAS  PubMed  Google Scholar 

  • Paterniti I, Campolo M, Cordaro M, Impellizzeri D, Siracusa R, Crupi R, Esposito E, Cuzzocrea S (2017) PPAR-α modulates the anti-inflammatory effect of melatonin in the secondary events of spinal cord Injury. Mol Neurobiol 54:5973–5987

    Article  CAS  PubMed  Google Scholar 

  • Prentice H, Gharibani PM, Ma Z, Alexandrescu A, Genova R, Chen PC, Modi J, Menzie J, Pan C, Tao R, Wu JY (2017) Neuroprotective functions through inhibition of ER stress by taurine or taurine combination treatments in a rat stroke model. Adv Exp Med Biol 975(Pt 1):193–205

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Melchiorri D, Sewerynek E, Poeggeler B, Barlow-Walden L, Chuang J, Ortiz GG, Acuña-Castroviejo D (1995) A review of the evidence supporting melatonin’s role as an antioxidant. J Pineal Res 18:1–11

    Article  CAS  PubMed  Google Scholar 

  • Romeo-Guitart D, Leiva-Rodríguez T, Espinosa-Alcantud M, Sima N, Vaquero A, Domínguez-Martín H, Ruano D, Casas C (2018) SIRT1 activation with neuroheal is neuroprotective but SIRT2 inhibition with AK7 is detrimental for disconnected motoneurons. Cell Death Dis 9:531

    Article  PubMed  PubMed Central  Google Scholar 

  • Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11:775–787

    Article  CAS  PubMed  Google Scholar 

  • Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO (2017) Melatonin stimulates the SIRT1/Nrf2 signaling pathway counteracting Lipopolysaccharide (LPS)-Induced oxidative stress to rescue postnatal rat brain. CNS Neurosci Ther 23:33–44

    Article  CAS  PubMed  Google Scholar 

  • Sheahan TD, Siuda ER, Bruchas MR, Shepherd AJ, Mohapatra DP, Gereau RWt, Golden JP, (2017) Inflammation and nerve injury minimally affect mouse voluntary behaviors proposed as indicators of pain. Neurobiol Pain (Cambridge, Mass) 2:1–12

    Article  Google Scholar 

  • Sheu ML, Pan LY, Yang CN, Sheehan J, Pan LY, You WC, Wang CC, Chen HS, Pan HC (2023a) Neuronal death caused by HMGB1-evoked via inflammasomes from thrombin-activated microglia cells. Int J Mol Sci 24(16):12664. https://doi.org/10.3390/ijms241612664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheu ML, Pan LY, Yang CN, Sheehan J, Pan LY, You WC, Wang CC, Pan HC (2023b) Thrombin-induced microglia activation modulated through aryl hydrocarbon receptors. Int J Mol Sci 24(14):11416. https://doi.org/10.3390/ijms241411416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sochocka M, Diniz BS, Leszek J (2017) Inflammatory Response in the CNS: Friend or Foe? Mol Neurobiol 54:8071–8089

    Article  CAS  PubMed  Google Scholar 

  • Strosznajder AK, Wójtowicz S, Jeżyna MJ, Sun GY, Strosznajder JB (2021) Recent insights on the role of PPAR-β/δ in Neuroinflammation and neurodegeneration, and its potential target for Therapy. Neuromol Med 23:86–98

    Article  CAS  Google Scholar 

  • Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y, Watanabe M, Magoori K, Ioka RX, Tachibana K, Watanabe Y, Uchiyama Y, Sumi K, Iguchi H, Ito S, Doi T, Hamakubo T, Naito M, Auwerx J, Yanagisawa M et al (2003) Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 100:15924–15929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Yan K, Wang Y, Wang Y, Chen H, Xu J, Lu Y, Wang X, Liang J, Zhang X (2020) Activation of PPAR-β/δ attenuates Brain Injury by suppressing inflammation and apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model. Neurochem Res 45:837–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguti EH, Ferreira YS, Stupp IJV, Fraga-Junior EB, Mendonça CB, Rossi FL, Ynoue HN, Doneda DL, Lopes L, Lima E, Buss ZS, Vandresen-Filho S (2018) Neuroprotective effect of melatonin against lipopolysaccharide-induced depressive-like behavior in mice. Physiol Behav 188:270–275

    Article  CAS  PubMed  Google Scholar 

  • Tobita Y, Arima T, Nakano Y, Uchiyama M, Shimizu A, Takahashi H (2020) Peroxisome proliferator-activated receptor beta/delta agonist suppresses inflammation and promotes neovascularization. Int J Mol Sci 21(15):5296. https://doi.org/10.3390/ijms21155296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toral M, Gómez-Guzmán M, Jiménez R, Romero M, Zarzuelo MJ, Utrilla MP, Hermenegildo C, Cogolludo Á, Pérez-Vizcaíno F, Gálvez J, Duarte J (2015) Chronic peroxisome proliferator-activated receptorβ/δ agonist GW0742 prevents hypertension, vascular inflammatory and oxidative status, and endothelial dysfunction in diet-induced obesity. J Hypertens 33:1831–1844

    Article  CAS  PubMed  Google Scholar 

  • Warden A, Truitt J, Merriman M, Ponomareva O, Jameson K, Ferguson LB, Mayfield RD, Harris RA (2016) Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep 6:27618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SM, Lin WY, Shen CC, Pan HC, Keh-Bin W, Chen YC, Jan YJ, Lai DW, Tang SC, Tien HR, Chiu CS, Tsai TC, Lai YL, Sheu ML (2016) Melatonin set out to ER stress signaling thwarts epithelial mesenchymal transition and peritoneal dissemination via calpain-mediated C/EBPβ and NFκB cleavage. J Pineal Res 60:142–154

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Sun G, Li E, Kiselyov K, Sun D (2017) ER stress and impaired autophagy flux in neuronal degeneration and brain injury. Ageing Res Rev 34:3–14

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ (2019) Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol 10:249

    Article  Google Scholar 

  • Zhu Q, Liu Z, Wang Y, Song E, Song Y (2021a) Endoplasmic reticulum stress manipulates autophagic response that antagonizes polybrominated diphenyl ethers quinone induced cytotoxicity in microglial BV2 cells. J Hazard Mater 411:124958

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Yu J, Gong J, Shen J, Ye D, Cheng D, Xie Z, Zeng J, Xu K, Shen J, Zhou H, Weng Y, Pan J, Zhan R (2021b) PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia. Aging 13:3405–3427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Taichung Veterans General Hospital (TCVGH), particularly its Tissue Bank, and for its Animal Center Care. The authors also thank the National RNAi Core Facility Platform, Taipei, Taiwan for the shRNA and the Genome Research Center, National Yang-Ming University for the pcDNA.

Funding

This study was supported by grants from the Ministry of Science and Technology, the National Science Council, Taiwan (MOST-106-2320-B-005-001-MY3, MOST-104-2320-B-005-002-MY3), National Chung Hsing University, Taiwan (NCHU108ST001F), Taichung Veterans General Hospital in Taiwan (TCVGH-1087327D, TCVGH-1087308 C, TCVGH-1077311 C, TCVGH-1077329D) and Tungs’ Taichung MetroHarbor Hospital, Taichung, Taiwan. The study was partially supported by the framework of the Higher Education Sprout Project from the Ministry of Education (MOE-112-S-0023-A) in Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

Pan HC, Wu SM and Sheu ML performed all of the mouse and cellular experiments, and generated and analyzed data; Yang CN, Pan LY for primary all of mouse primary microglia and BV2 microglia. Lee WJ, Sheehan J consulted and analyzed the data. Pan HC, Lin MH and Chen HS provide clinical information. Lee SH participated in immunofluorescence image experiments. Shen CC, Shen LW conducting molecular docking studies and LIGPLOT. Sheu ML directed the experiments and analyzed and assembled the data. All authors approved the final manuscript.

Corresponding author

Correspondence to Meei-Ling Sheu.

Ethics declarations

Ethics Approval and Consent to Participate

All animal studies were approved by the appropriate institutional ethical committee of the Taichung Veterans General Hospital of Taiwan (Approval No La-1061488). All procedures have been conformed according to the guidelines from the NIH Guide for the Care and Use of Laboratory Animals. All animals were euthanized by cervical dislocation under isoflurane inhalation (induction: 3%, maintenance: 1–2%) in medical air (0.4 L/min). Consent to participate-NA/Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, HC., Yang, CN., Lee, WJ. et al. Melatonin Enhanced Microglia M2 Polarization in Rat Model of Neuro-inflammation Via Regulating ER Stress/PPARδ/SIRT1 Signaling Axis. J Neuroimmune Pharmacol 19, 11 (2024). https://doi.org/10.1007/s11481-024-10108-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11481-024-10108-y

Keywords

Navigation