Skip to main content

Advertisement

Log in

Meta-Analysis on Nicotine's Modulation of HIV-Associated Dementia

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

HIV-Associated Dementia (HAD) is a significant comorbidity that many HIV-patients face. Our study utilized QIAGEN Ingenuity Pathway Analysis (IPA) to identify and analyze molecular profiles and pathways underlying nicotine’s impact on HAD pathology. The Qiagen Knowledge Base (QKB) defines HAD as “Dementia associated with acquired immunodeficiency syndrome (disorder).” Although much remains unknown about HAD pathology, the curated research findings from the QKB shows 5 upregulated molecules that are associated with HAD + : CCL2 (Chemokine (C–C motif) ligand 2), L-glutamic acid, GLS (Glutaminase), POLG (DNA polymerase subunit gamma), and POLB (DNA polymerase subunit beta). The current study focused on these 5 HAD pathology molecules as the phenotype of interest. The Pathway Explorer tool of IPA was used to connect nicotine-associated molecules with the 5 HAD associated molecules (HAD pathology molecules) by connecting 29 overlapping molecules (including transcription regulators, cytokines, kinases, and other enzymes/proteins). The Molecule-Activity-Predictor (MAP) tool predicted nicotine-induced activation of the HAD pathology molecules indicating the exacerbation of HAD. However, alternative pathways with more holistic representations of molecular relationships revealed the potential of nicotine as a neuroprotective treatment. It was found that concurrent with nicotine treatment the individual inactivation of several of the intermediary molecules in the holistic pathways caused the downregulation of the HAD pathology molecules. These findings reveal that nicotine may have therapeutic properties for HAD when given alongside specific inhibitory drugs for one or more of the identified intermediary molecules.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

IPA Analysis Match CL license was purchased from QIAGEN LLC.

Abbreviations

AIDS:

Acquired Immunodeficiency Syndrome

ADC:

AIDS-dementia complex

BBB:

Blood brain barrier

CCL2:

Chemokine (C-C motif) ligand 2

DCs:

Dendritic cells

GLS:

Glutaminase

HAART:

Highly active antiretroviral therapy

HAD:

HIV-Associated Dementia

HANDs:

HIV-Associated neurological disorders

HIV:

Human Immunodeficiency Virus

IPA:

Ingenuity Pathway Analysis

IL-1β:

Interleukin-1β

ICAM-1:

Intercellular adhesion molecule‐1

MAP:

Molecule-Activity-Predictor

MCP-1:

Monocyte chemoattractant protein‐1

POLG:

DNA polymerase subunit gamma

POLB:

DNA polymerase subunit beta

QKB:

Qiagen Knowledge Base

Tat:

Transcriptional transactivator

TNF:

Tumor Necrosis Factor

References

  • Al-Omoush TK, Alzoubi KH, Khabour OF, Alsheyab FM, Abu-Siniyeh A, Al-Sawalha NA, Mayyas FA, Cobb CO, Eissenberg T (2020) The CHRNA5 Polymorphism (rs16969968) and its Association with Waterpipe Smoking Addiction among Jordanians. Arab J Basic Appl Sci 27(1):450–455. https://doi.org/10.1080/25765299.2020.1849491

    Article  Google Scholar 

  • Alkondon MPE, Cortes WS, Maelicke A, Albuquerque (1997 ) Choline is a selective agonist of alpha7 nicotinic acetylcholine receptors in the rat brain neurons. EX Eur J Neuroscience 9(12):2734–2742. https://doi.org/10.1111/j.1460-9568.1997.tb01702

  • Anthony I, Ramage S, Carnie F, Simmonds P, Bell J (2005) Influence of HAART on HIV-related CNS disease and neuroinflammation. J Neuropathol Exp Neurol 64(6):529–536

    Article  CAS  Google Scholar 

  • Bajrektarevic D, Corsini S, Nistri A, Tortora M (2019) Nicotine neuroprotection of brain neurons: the other side of nicotine addiction. In Neuroscience of Nicotine (pp 79–86). Elsevier

  • Banerjee S, Walseth TF, Borgmann K, Wu L, Bidasee KR, Kannan MS, Ghorpade A (2008) CD38/cyclic ADP-ribose regulates astrocyte calcium signaling: implications for neuroinflammation and HIV-1-associated dementia. J Neuroimmune Pharmacol 3(3):154–164

    Article  Google Scholar 

  • Bartz SR, Emerman M (1999) Human Immunodeficiency Virus Type 1 Tat Induces Apoptosis and Increases Sensitivity to Apoptotic Signals by Up-Regulating FLICE/Caspase-8. J Virol 73(3):1956. https://doi.org/10.1128/JVI.73.3.1956-1963.1999

    Article  CAS  Google Scholar 

  • Berger F, Gage FH, Vijayaraghavan S (1998) Nicotinic receptor-induced apoptotic cell death of hippocampal progenitor cells. J Neurosci 18(17):6871–6881

    Article  CAS  Google Scholar 

  • Bethel-Brown C, Yao H, Hu G, Buch S (2012) Platelet-derived growth factor (PDGF)-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation. J Neuroinflammation 9(1):1–14

    Article  Google Scholar 

  • Bouwman F, Skolasky R, Hes D, Selnes O, Glass J, Nance-Sproson T, Royal W, Dal Pan G, McArthur JC (1998) Variable progression of HIV-associated dementia. Neurology 50(6):1814–1820

    Article  CAS  Google Scholar 

  • Castellano P, Prevedel L, Valdebenito S, Eugenin EA (2019) HIV infection and latency induce a unique metabolic signature in human macrophages. Sci Rep 9(1):1–14

    Article  CAS  Google Scholar 

  • Cataldo JK, Prochaska JJ, Glantz SA (2010) Cigarette smoking is a risk factor for Alzheimer’s Disease: an analysis controlling for tobacco industry affiliation. J Alzheimers Dis 19(2):465–480. https://doi.org/10.3233/JAD-2010-1240

    Article  Google Scholar 

  • Chernyavsky AI, Shchepotin IB, Galitovkiy V, Grando SA (2015) “Mechanisms of tumor-promoting activities of nicotine in lung cancer: synergistic effects of cell membrane and mitochondrial nicotinic acetylcholine receptors”. BMC Cancer 15:152. https://doi.org/10.1186/s12885-015-1158-4

  • Clarkson BD, Kahoud RJ, McCarthy CB, Howe CL (2017) Inflammatory cytokine-induced changes in neural network activity measured by waveform analysis of high-content calcium imaging in murine cortical neurons. Sci Rep 7(1):1–13

    Article  Google Scholar 

  • Clifford DB (2000) Human immunodeficiency virus–associated dementia. Arch Neurol 57(3):321–324

    Article  CAS  Google Scholar 

  • Crowe SM, Westhorpe CL, Mukhamedova N, Jaworowski A, Sviridov D, Bukrinsky M (2010) The macrophage: the intersection between HIV infection and atherosclerosis. J Leukoc Biol 87(4):589–598

    Article  CAS  Google Scholar 

  • Cunningham EL, McGuinness B, Herron B, Passmore AP (2015) Dementia. Ulster Med J 84(2):79–87. https://www.ncbi.nlm.nih.gov/pubmed/26170481

  • Davis HF, Skolasky RL Jr, Selnes OA, Burgess DM, McArthur JC (2002) Assessing HIV-associated dementia: modified HIV dementia scale versus the Grooved Pegboard. AIDS Read 12(1):29–31, 38

  • Dineley KT, Westerman M, Bui D, Bell K, Ashe KH, Sweatt JD (2001) β-Amyloid activates the mitogen-activated protein kinase cascade via hippocampal α7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer’s disease. J Neurosci 21(12):4125–4133

    Article  CAS  Google Scholar 

  • Dobbie MS, Hurst RD, Klein NJ, Surtees RA (1999) Upregulation of intercellular adhesion molecule-1 expression on human endothelial cells by tumour necrosis factor-α in an in vitro model of the blood–brain barrier. Brain Res 830(2):330–336

    Article  CAS  Google Scholar 

  • Dong Y, Bi W, Zheng K, Zhu E, Wang S, Xiong Y, Chang J, Jiang J, Liu B, Lu Z (2020) Nicotine prevents oxidative stress-induced hippocampal neuronal injury through α7-nAChR/Erk1/2 signaling pathway. Front Mol Neurosci 13:204

    Article  Google Scholar 

  • Fajardo-Ortiz D, Lopez-Cervantes M, Duran L, Dumontier M, Lara M, Ochoa H, Castano VM (2017) The emergence and evolution of the research fronts in HIV/AIDS research. PLoS One 12(5):e0178293

  • Ghafouri M, Amini S, Khalili K, Sawaya BE (2006) HIV-1 associated dementia: symptoms and causes. Retrovirology 3(1):1–11

    Article  Google Scholar 

  • Gianaros PJ, Wager TD (2015) Brain-Body Pathways Linking Psychological Stress and Physical Health. Curr Dir Psychol Sci 24(4):313-321

  • Giunta B, Ehrhart J, Townsend K, Sun N, Vendrame M, Shytle D, Tan J, Fernandez F (2004) Galantamine and nicotine have a synergistic effect on inhibition of microglial activation induced by HIV-1 gp120. Brain Res Bull 64(2):165–170

    Article  CAS  Google Scholar 

  • Gooneratne SL, Richard J, Lee WS, Finzi A, Kent SJ, Parsons MS (2015) Slaying the Trojan Horse: Natural Killer Cells Exhibit Robust Anti-HIV-1 Antibody-Dependent Activation and Cytolysis against Allogeneic T Cells. J Virol 89(1):97. https://doi.org/10.1128/JVI.02461-14

    Article  CAS  Google Scholar 

  • Gschwandtner M, Derler R, Midwood KS (2019) More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis. Front Immunol 10:2759

    Article  CAS  Google Scholar 

  • Han B, Li X, Hao J (2017) The cholinergic anti-inflammatory pathway: An innovative treatment strategy for neurological diseases. Neurosci Biobehav Rev 77:358–368. https://doi.org/10.1016/j.neubiorev.2017.04.002

  • Hong S, Banks WA (2015) Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 45:1–12

    Article  CAS  Google Scholar 

  • Huang Y, Zhao L, Jia B, Wu L, Li Y, Curthoys N, Zheng JC (2011) Glutaminase dysregulation in HIV-1-infected human microglia mediates neurotoxicity: relevant to HIV-1-associated neurocognitive disorders. J Neurosci 31(42):15195–15204

    Article  CAS  Google Scholar 

  • Izquierdo-Useros N, Naranjo-Gómez M, Erkizia I, Puertas MC, Borràs FE, Blanco J, Martinez-Picado J (2010) HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse?. PLoS Pathog 6(3):e1000740

  • Kalliolias GD, Ivashkiv LB (2016) TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 12(1):49–62

    Article  CAS  Google Scholar 

  • Kalra R, Singh SP, Pena-Philippides JC, Langley RJ, Razani-Boroujerdi S, Sopori ML (2004) Immunosuppressive and anti-inflammatory effects of nicotine administered by patch in an animal model. Clin Vaccine Immunol 11(3):563–568

    Article  CAS  Google Scholar 

  • Katuri A, Bryant J, Heredia A, Makar TK (2019) Role of the inflammasomes in HIV-associated neuroinflammation and neurocognitive disorders. Exp Mol Pathol 108:64–72

    Article  CAS  Google Scholar 

  • Kovalevich J, Langford D (2012) Neuronal toxicity in HIV CNS disease. Futur Virol 7(7):687–698

    Article  CAS  Google Scholar 

  • Kramer A, Green J, Pollard J Jr, Tugendreich S (2014) Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30(4):523–530. https://doi.org/10.1093/bioinformatics/btt703

    Article  CAS  Google Scholar 

  • Kramer-Hammerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R (2005) Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111(2):194–213. https://doi.org/10.1016/j.virusres.2005.04.009

    Article  CAS  Google Scholar 

  • Li Y, Agarwal P (2009) A pathway-based view of human diseases and disease relationships. PLoS One 4.2. https://dokumen.pub/in-silico-drug-design-repurposing-techniques-and-methodologies-1nbsped-0128161256-9780128161258.html

  • Lu M, Wang Y, Zhan X (2019) The MAPK pathway-based drug therapeutic targets in pituitary adenomas. Front Endocrinol 10:330

    Article  Google Scholar 

  • Makinson A, Moing VL, Kouanfack C, Laurent C, Delaporte E (2008) Safety of stavudine in the treatment of HIV infection with a special focus on resource-limited settings. Expert Opin Drug Saf 7(3):283–293

    Article  CAS  Google Scholar 

  • Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD (2016) The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a mini review. Oxid Med Cell Longev 2016

  • Mattson M, Haughey N, Nath A (2005) Cell death in HIV dementia. Cell Death Differ 12(1):893–904

    Article  CAS  Google Scholar 

  • Medina-Cleghorn D, Nomura DK (2014) Exploring metabolic pathways and regulation through functional chemoproteomic and metabolomic platforms. Chem Biol 21(9):1171–1184

    Article  CAS  Google Scholar 

  • Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci 95(24):14500–14505. https://doi.org/10.1073/pnas.95.24.14500

    Article  CAS  Google Scholar 

  • Nicholatos JW, Francisco AB, Bender CA, Yeh T, Lugay FJ, Salazar JE, Glorioso C, Libert S (2018) Nicotine promotes neuron survival and partially protects from Parkinson’s disease by suppressing SIRT6. Acta Neuropathol Commun 6(1):120. https://doi.org/10.1186/s40478-018-0625-y

    Article  CAS  Google Scholar 

  • Papke RL, Lindstrom JM (2020) Nicotinic acetylcholine receptors: Conventional and unconventional ligands and signaling. Neuropharmacology, 168. https://doi.org/10.1016/j.neuropharm.2020.108021.

  • Pavlov VA, Tracey KJ (2012) The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nat Rev Endocrinol 8(12):743–754. https://doi.org/10.1038/nrendo.2012.189

    Article  CAS  Google Scholar 

  • Perrin FE, Lacroix S, Avilés-Trigueros M, David S (2005) Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1α and interleukin-1β in Wallerian degeneration. Brain 128(4):854–866. https://doi.org/10.1093/brain/awh407

    Article  Google Scholar 

  • Piovesana R, Salazar Intriago MS, Dini L, Tata AM (2021) Cholinergic Modulation of Neuroinflammation: Focus on α7 Nicotinic Receptor. Int J Mol Sci 22(9). https://doi.org/10.3390/ijms22094912

  • Pollicita MA, Svicher S, Ronga V, Perno L, Carlo F (2008) HIV-1-Associated Dementia During HAART Therapy. Recent Pat on CNS Drug Discov 3(23). https://doi.org/10.2174/157488908783421438

  • Prochaska J (2010) Cigarette smoking is a risk factor for Alzheimer’s Disease: an analysis controlling for tobacco industry affilia. J Alzheimers Dis 19(2):465–480

    Article  Google Scholar 

  • Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863(12):2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012

    Article  CAS  Google Scholar 

  • Rocha AJ, Nunes RH, Maia AC Jr (2015) Dementia in motor neuron disease: reviewing the role of MRI in diagnosis. Dementia & Neuropsychologia 9(4):369–379

    Article  Google Scholar 

  • Saha P, Guha S, Biswas SC (2020) P38K and JNK pathways are induced by amyloid-beta in astrocyte: Implication of MAPK pathways in astrogliosis in Alzheimer’s disease. Mol Cell Neurosci 108:103551. https://doi.org/10.1016/j.mcn.2020.103551

    Article  CAS  Google Scholar 

  • Saha RN, Pahan K (2003) Tumor necrosis factor-α at the crossroads of neuronal life and death during HIV-associated dementia. J Neurochem 86(5):1057–1071. https://doi.org/10.1046/j.1471-4159.2003.01942.x

  • Scheu S, Ali S, Ruland C, Arolt V, Alferink J (2017) The C-C Chemokines CCL17 and CCL22 and Their Receptor CCR4 in CNS Autoimmunity. Int J Mol Sci 18(11). https://doi.org/10.3390/ijms18112306

  • Shaftel SS, Griffin WST, O’Banion MK (2008) The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation 5(1):7. https://doi.org/10.1186/1742-2094-5-7

    Article  CAS  Google Scholar 

  • Speechly CM, Bridges-Webb C, Passmore E (2008) The pathway to dementia diagnosis. Med J Aust 189(9):487–489. https://doi.org/10.5694/j.1326-5377.2008.tb02140.x

  • Tao X et al (2019) Nicotine Protects Dendritic Cells from Apoptosis and Support DCs-dependent CD4+ T-cell Priming in vitro. Indian J Pharm Sci 81(6):1000–1010

    Article  CAS  Google Scholar 

  • Thompson KA, McArthur JC, Wesselingh SL (2001) Correlation between neurological progression and astrocyte apoptosis in HIV-associated dementia. Ann Neurol 49(6):745–752. https://doi.org/10.1002/ana.1011

    Article  CAS  Google Scholar 

  • Tian J, Shi J, Li T, Li L, Wang Z, Li X, Lv Z, Zheng Q, Wei M, Wang Y (2017) Efficacy and Safety of an Herbal Therapy in Patients with Amnestic Mild Cognitive Impairment: A 24-Week Randomized Phase III Trial. Evid Based Complement Alternat Med 2017:4251747. https://doi.org/10.1155/2017/4251747

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Eric Seiser for initial use of QIAGEN Knowledge Base and QIAGEN Ingenuity Pathway Analysis tools.

Funding

This study was partially supported by National Institute of Health grants DA43448 and DA046258 to SLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulie L. Chang.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors declare that they have no conflict of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, V., Vigorito, M., Kota, N.K. et al. Meta-Analysis on Nicotine's Modulation of HIV-Associated Dementia. J Neuroimmune Pharmacol 17, 487–502 (2022). https://doi.org/10.1007/s11481-021-10027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-021-10027-2

Keywords

Navigation