Skip to main content

Advertisement

Log in

Reduction of Lewy Body Pathology by Oral Cinnamon

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

α-Synucleinopathies in a broader sense comprise of several neurodegenerative disorders that primarily include Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). These disorders are well characterized by the accumulation of aggregated insoluble α-synuclein (α-syn) protein known as Lewy bodies. Till date no effective cure is available to reduce the burden of Lewy body. The present investigation underlines the importance of a naturally used spice and flavoring agent viz. cinnamon in reducing α-syn deposits in transgenic mice expressing mutant A53T human α-syn. Upon oral administration, cinnamon markedly reduced the level of insoluble α-syn in nigra, hippocampus and brain stem of A53T mice. We also demonstrated that sodium benzoate (NaB), a metabolite of cinnamon, a widely used food additive and a FDA-approved drug for glycine encephalopathy, was also capable of reducing α-syn deposits in A53T mice. In addition, both cinnamon and NaB treatments showed improvement in their motor and cognitive functions. Glial activation plays an important role in the pathogenesis of various neurodegenerative disorders including PD, DLB and MSA, and we found suppression of microglial and astroglial activation in the nigra of A53T mice upon cinnamon treatment. Moreover, neuroprotective proteins like DJ-1 and Parkin are known to reduce the formation of Lewy bodies in the CNS. Accordingly, we observed upregulation and/or normalization of DJ-1 and Parkin in the nigra of A53T mice by treatment with cinnamon and NaB. Together, these results highlight a new therapeutic property of cinnamon and suggest that cinnamon and NaB may be used to halt the progression of α-synucleinopathies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, Diep L, Keim PS, Shen X, Chataway T, Schlossmacher MG, Seubert P, Schenk D, Sinha S, Gai WP, Chilcote TJ (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752

    Article  CAS  PubMed  Google Scholar 

  • Balestrino R, Schapira AHV (2020) Parkinson disease. Eur J Neurol 27:27–42

    Article  CAS  PubMed  Google Scholar 

  • Brahmachari S, Pahan K (2007) Sodium benzoate, a food additive and a metabolite of cinnamon, modifies T cells at multiple steps and inhibits adoptive transfer of experimental allergic encephalomyelitis. J Immunol 179:275–283

    Article  CAS  PubMed  Google Scholar 

  • Chandra G, Rangasamy SB, Roy A, Kordower JH, Pahan K (2016) Neutralization of RANTES and Eotaxin Prevents the Loss of Dopaminergic Neurons in a Mouse Model of Parkinson Disease. J Biol Chem 291:15267–15281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavez-Bejar MI, Lara AR, Lopez H, Hernandez-Chavez G, Martinez A, Ramirez OT, Bolivar F, Gosset G (2008) Metabolic engineering of Escherichia coli for L-tyrosine production by expression of genes coding for the chorismate mutase domain of the native chorismate mutase-prephenate dehydratase and a cyclohexadienyl dehydrogenase from Zymomonas mobilis. Appl Environ Microbiol 74:3284–3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi I, Seegobin SP, Liang D, Yue Z (2020a) Synucleinphagy: a microglial “community cleanup program” for neuroprotection. Autophagy:1–3

  • Choi I, Zhang Y, Seegobin SP, Pruvost M, Wang Q, Purtell K, Zhang B, Yue Z (2020b) Microglia clear neuron-released alpha-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun 11:1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung KK, Dawson VL, Dawson TM (2003) New insights into Parkinson’s disease. J Neurol 250(Suppl 3):III15–I24

    PubMed  Google Scholar 

  • Corbett GT, Gonzalez FJ, Pahan K (2015) Activation of peroxisome proliferator-activated receptor alpha stimulates ADAM10-mediated proteolysis of APP. Proc Natl Acad Sci U S A 112:8445–8450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danielson SR, Held JM, Schilling B, Oo M, Gibson BW, Andersen JK (2009) Preferentially increased nitration of alpha-synuclein at tyrosine-39 in a cellular oxidative model of Parkinson’s disease. Anal Chem 81:7823–7828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Deurwaerdere P, Di Giovanni G (2017) Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 151:175–236

    Article  PubMed  CAS  Google Scholar 

  • Duffy MF, Collier TJ, Patterson JR, Kemp CJ, Luk KC, Tansey MG, Paumier KL, Kanaan NM, Fischer DL, Polinski NK, Barth OL, Howe JW, Vaikath NN, Majbour NK, El-Agnaf OMA, Sortwell CE (2018) Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. J Neuroinflammation 15:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, Gendelman HE, Pahan K (2007) Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 104:18754–18759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Roy A, Matras J, Brahmachari S, Gendelman HE, Pahan K (2009) Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson’s disease. J Neurosci 29:13543–13556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa M, Fujiwara H, Nonaka T, Wakabayashi K, Takahashi H, Lee VM, Trojanowski JQ, Mann D, Iwatsubo T (2002) Phosphorylated alpha-synuclein is ubiquitinated in alpha-synucleinopathy lesions. J Biol Chem 277:49071–49076

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Kohsaka S (2002) Intracellular signaling in M-CSF-induced microglia activation: role of Iba1. Glia 40:164–174

    Article  PubMed  Google Scholar 

  • Jana A, Modi KK, Roy A, Anderson JA, van Breemen RB, Pahan K (2013) Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders. J Neuroimmune Pharmacol 8:739–755

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Jiang Q, Liu W, Feng J (2006) Parkin suppresses the expression of monoamine oxidases. J Biol Chem 281:8591–8599

    Article  CAS  PubMed  Google Scholar 

  • Kahle PJ, Waak J, Gasser T (2009) DJ-1 and prevention of oxidative stress in Parkinson’s disease and other age-related disorders. Free Radic Biol Med 47:1354–1361

    Article  CAS  PubMed  Google Scholar 

  • Khandelwal PJ, Dumanis SB, Feng LR, Maguire-Zeiss K, Rebeck G, Lashuel HA, Moussa CE (2010) Parkinson-related parkin reduces alpha-Synuclein phosphorylation in a gene transfer model. Mol Neurodegener 5:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khasnavis S, Pahan K (2012) Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates neuroprotective Parkinson disease protein DJ-1 in astrocytes and neurons. J Neuroimmune Pharmacol 7:424–435

    Article  PubMed  Google Scholar 

  • Khasnavis S, Pahan K (2014) Cinnamon treatment upregulates neuroprotective proteins Parkin and DJ-1 and protects dopaminergic neurons in a mouse model of Parkinson’s disease. J Neuroimmune Pharmacol 9:569–581

    Article  PubMed  PubMed Central  Google Scholar 

  • La Vitola P, Balducci C, Baroni M, Artioli L, Santamaria G, Castiglioni M, Cerovic M, Colombo L, Caldinelli L, Pollegioni L, Forloni G (2020) Peripheral inflammation exacerbates alpha-synuclein toxicity and neuropathology in Parkinson’s models. Neuropathol Appl Neurobiol

  • Lang AE, Lozano AM (1998) Parkinson’s disease. First of two parts. N Engl J Med 339:1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Leong SL, Pham CL, Galatis D, Fodero-Tavoletti MT, Perez K, Hill AF, Masters CL, Ali FE, Barnham KJ, Cappai R (2009) Formation of dopamine-mediated alpha-synuclein-soluble oligomers requires methionine oxidation. Free Radic Biol Med 46:1328–1337

    Article  CAS  PubMed  Google Scholar 

  • Lindersson E, Beedholm R, Hojrup P, Moos T, Gai W, Hendil KB, Jensen PH (2004) Proteasomal inhibition by alpha-synuclein filaments and oligomers. J Biol Chem 279:12924–12934

    Article  CAS  PubMed  Google Scholar 

  • Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209:975–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modi KK, Roy A, Brahmachari S, Rangasamy SB, Pahan K (2015) Cinnamon and Its Metabolite Sodium Benzoate Attenuate the Activation of p21rac and Protect Memory and Learning in an Animal Model of Alzheimer’s Disease. PLoS One 10:e0130398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Modi KK, Jana A, Ghosh S, Watson R, Pahan K (2017) Correction: A Physically-Modified Saline Suppresses Neuronal Apoptosis, Attenuates Tau Phosphorylation and Protects Memory in an Animal Model of Alzheimer’s Disease. PLoS One 12:e0180602

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondal S, Pahan K (2015) Cinnamon ameliorates experimental allergic encephalomyelitis in mice via regulatory T cells: implications for multiple sclerosis therapy. PLoS One 10:e0116566

    Article  PubMed  PubMed Central  Google Scholar 

  • Nash Y, Schmukler E, Trudler D, Pinkas-Kramarski R, Frenkel D (2017) DJ-1 deficiency impairs autophagy and reduces alpha-synuclein phagocytosis by microglia. J Neurochem 143:584–594

    Article  CAS  PubMed  Google Scholar 

  • Neuberger JM, Schweitzer S, Rolland MO, Burghard R (2000) Effect of sodium benzoate in the treatment of atypical nonketotic hyperglycinaemia. J Inherit Metab Dis 23:22–26

    Article  CAS  PubMed  Google Scholar 

  • Oueslati A (2016) Implication of Alpha-Synuclein Phosphorylation at S129 in Synucleinopathies: What Have We Learned in the Last Decade? J Parkinsons Dis 6:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahan K (2011) Immunomodulation of experimental allergic encephalomyelitis by cinnamon metabolite sodium benzoate. Immunopharmacol Immunotoxicol 33:586–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahan K (2015) Prospects of Cinnamon in Multiple Sclerosis. J Mult Scler (Foster City) 2:1000149

    Article  Google Scholar 

  • Pahan P, Pahan K (2015) Can cinnamon bring aroma in Parkinson’s disease treatment? Neural Regen Res 10:30–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel D, Jana A, Roy A, Pahan K (2019) Cinnamon and its Metabolite Protect the Nigrostriatum in a Mouse Model of Parkinson’s Disease Via Astrocytic GDNF. J Neuroimmune Pharmacol 14:503–518

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel D, Roy A, Raha S, Kundu M, Gonzalez FJ, Pahan K (2020) Upregulation of BDNF and hippocampal functions by a hippocampal ligand of PPARalpha. JCI Insight 5

  • Plaza-Zabala A, Sierra-Torre V, Sierra A (2017) Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging. Int J Mol Sci 18

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  PubMed  Google Scholar 

  • Rial D, Castro AA, Machado N, Garcao P, Goncalves FQ, Silva HB, Tome AR, Kofalvi A, Corti O, Raisman-Vozari R, Cunha RA, Prediger RD (2014) Behavioral phenotyping of Parkin-deficient mice: looking for early preclinical features of Parkinson’s disease. PLoS One 9:e114216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roy A, Kundu M, Jana M, Mishra RK, Yung Y, Luan CH, Gonzalez FJ, Pahan K (2016) Identification and characterization of PPARα ligands in the hippocampus. Nat Chem Biol 12:1075–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salat D, Tolosa E (2018) Levodopa in the treatment of Parkinson’s disease: current status and new developments. J Parkinsons Dis 3:255–269

    Article  CAS  Google Scholar 

  • Sarkar S et al (2020) Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson’s disease. J Clin Invest 130:4195–4212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scherzer CR, Grass JA, Liao Z, Pepivani I, Zheng B, Eklund AC, Ney PA, Ng J, McGoldrick M, Mollenhauer B, Bresnick EH, Schlossmacher MG (2008) GATA transcription factors directly regulate the Parkinson’s disease-linked gene alpha-synuclein. Proc Natl Acad Sci U S A 105:10907–10912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B (2003) Aggregated and monomeric alpha-synuclein bind to the S6’ proteasomal protein and inhibit proteasomal function. J Biol Chem 278:11753–11759

    Article  CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  • Strohm L, Behrends C (2020) Glia-specific autophagy dysfunction in ALS. Semin Cell Dev Biol 99:172–182

    Article  CAS  PubMed  Google Scholar 

  • Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37:510–518

    Article  CAS  PubMed  Google Scholar 

  • Ulusoy A, Kirik D (2008) Can overexpression of parkin provide a novel strategy for neuroprotection in Parkinson’s disease? Exp Neurol 212:258–260

    Article  CAS  PubMed  Google Scholar 

  • Varghese F, Bukhari AB, Malhotra R, De A (2014) IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One 9:e96801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villar-Pique A, Lopes da Fonseca T, Sant’Anna R, Szego EM, Fonseca-Ornelas L, Pinho R, Carija A, Gerhardt E, Masaracchia C, Abad Gonzalez E, Rossetti G, Carloni P, Fernandez CO, Foguel D, Milosevic I, Zweckstetter M, Ventura S, Outeiro TF (2016) Environmental and genetic factors support the dissociation between alpha-synuclein aggregation and toxicity. Proc Natl Acad Sci U S A 113:E6506–E6515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang Q, Yu R, Zhang Q, Zhang Z, Li H, Ren C, Yang R, Niu H (2020) Minocycline inhibition of microglial rescues nigrostriatal dopaminergic neurodegeneration caused by mutant alpha-synuclein overexpression. Aging 12:14232–14243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Xu X, Xiang Z, Zhou J, Zhang Z, Hu C, He C (2010) Nitrated alpha-synuclein induces the loss of dopaminergic neurons in the substantia nigra of rats. PLoS One 5:e9956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zondler L, Miller-Fleming L, Repici M, Goncalves S, Tenreiro S, Rosado-Ramos R, Betzer C, Straatman KR, Jensen PH, Giorgini F, Outeiro TF (2014) DJ-1 interactions with alpha-synuclein attenuate aggregation and cellular toxicity in models of Parkinson’s disease. Cell Death Dis 5:e1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by merit awards (1I01BX003033 and 1I01BX005002) from US Department of Veterans Affairs and a grant from NIH (NS108025). Moreover, Dr. Pahan is the recipient of a Research Career Scientist Award (1IK6 BX004982) from the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalipada Pahan.

Ethics declarations

Conflict of Interest

None

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 407 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raha, S., Dutta, D., Roy, A. et al. Reduction of Lewy Body Pathology by Oral Cinnamon. J Neuroimmune Pharmacol 16, 592–608 (2021). https://doi.org/10.1007/s11481-020-09955-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-020-09955-2

Keywords

Navigation