Advertisement

Dopaminergic Pathways in Obesity-Associated Inflammation

  • Fernanda LeiteEmail author
  • Laura Ribeiro
Invited Review
  • 192 Downloads

Abstract

The overwhelming prevalence of obesity is a priority for public health compromising human lifespan and representing important economic burden worldwide. Obesity is characterized by a state of chronic low-grade inflammation associated to metabolic dysfunction. Although the efforts for unravelling the complex immunometabolic signaling pathways to explain the association of obesity with type 2 diabetes, cardiovascular diseases, cancer, neurodegenerative diseases and psychiatric disorders, we still do not have all the picture to design effective therapeutic to fight these immunometabolic disease clusters. Dopaminergic pathways apart from having a major role in the regulation of appetite and feeding behaviors are important immunoregulators in inflammation; thus, dopaminergic regulation is suggested to impact obesity- associated inflammation. Dopamine (DA) has been reported to modulate immune function and immune cells themselves produce endogenous DA. DA-induced immunomodulation is currently the focus of intense experimental research and dopaminergic pathways are increasingly considered a target for drug development in immune diseases. While the role of dopaminergic pathways in immune-mediated diseases has been intensively investigated in neurodegenerative diseases, dopaminergic immunomodulation in obesity-associated inflammation is largely unknown. This review will integrate the actual knowledge about dopaminergic pathways involved in obesity-associated inflammation with special focus on immune innate key cell players. We present an explanatory hypothesis with a model that integrate central and peripheral dopaminergic circuits in the relationship between neuroimmune and metabolic systems in obesity-associated inflammation. A perspective on the potential role of dopaminergic drugs in the context of obesity will be given.

Graphical Abstract

Graphical representation of central and peripheral dopaminergic pathways in obesity-associated inflammation

Keywords

Obesity Inflammation Dopamine Dopaminergic pathways Immune cells Adipocytes Neuron 

Notes

Author Contribution

All authors were involved in study conception and design, acquisition, analysis and interpretation of relevant literature. All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved and declare to have confidence in the integrity of the contributions of their co-authors.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing financial interests.

References

  1. Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behav 91:449–458.  https://doi.org/10.1016/j.physbeh.2007.04.011 CrossRefPubMedGoogle Scholar
  2. Adams WK, Sussman JL, Kaur S, D'souza AM, Kieffer TJ, Winstanley CA (2015) Long-term, calorie-restricted intake of a high-fat diet in rats reduces impulse control and ventral striatal D2 receptor signalling - two markers of addiction vulnerability. Eur J Neurosci 42:3095–3104.  https://doi.org/10.1111/ejn.13117 CrossRefPubMedGoogle Scholar
  3. Ahima RS, Antwi DA (2008) Brain regulation of appetite and satiety. Endocrinol Metab Clin N Am 37:811–823.  https://doi.org/10.1016/j.ecl.2008.08.005 CrossRefGoogle Scholar
  4. Ali S, Miller KK, Freudenreich O (2010) Management of psychosis associated with a prolactinoma: case report and review of the literature. Psychosomatics 51:370–376.  https://doi.org/10.1176/appi.psy.51.5.370 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Amano SU, Cohen JL, Vangala P, Tencerova M, Nicoloro SM, Yawe JC, Shen Y, Czech MP, Aouadi M (2014) Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab 19:162–171.  https://doi.org/10.1016/j.cmet.2013.11.017 CrossRefPubMedGoogle Scholar
  6. Apolzan J, Harris R (2012) Differential effects of chow and purified diet on the consumption of sucrose solution and lard and the development of obesity. Physiol Behav 105:325–331.  https://doi.org/10.1016/j.physbeh.2011.08.023 CrossRefPubMedGoogle Scholar
  7. Aron-Wisnewsky J, Tordjman J, Poitou C, Darakhshan F, Hugol D, Basdevant A, Aissat A, Guerre-Millo M, Clément K (2009) Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab 94:4619–4623.  https://doi.org/10.1210/jc.2009-0925 CrossRefPubMedGoogle Scholar
  8. Arreola R, Alvarez-Herrera S, Pérez-Sánchez G, Becerril-Villanueva E, Cruz-Fuentes C, Flores-Gutierrez EO, Garcés-Alvarez ME, de la Cruz-Aguilera DL, Medina-Rivero E, Hurtado-Alvarado G, Quintero-Fabián S, Pavón L (2016) Immunomodulatory effects mediated by dopamine. J Immunol Res 2016:3160486–3160431.  https://doi.org/10.1155/2016/3160486 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Athanasoulia AP, Sievers C, Uhr M, Ising M, Stalla GK, Schneider HJ (2014) The effect of the ANKK1/DRD2 Taq1A polymorphism on weight changes of dopaminergic treatment in prolactinomas. Pituitary 17:240–245.  https://doi.org/10.1007/s11102-013-0496-y CrossRefPubMedGoogle Scholar
  10. Auriemma RS, De Alcubierre D, Pirchio R, Pivonello R, Colao A (2018) The effects of hyperprolactinemia and its control on metabolic diseases. Expert Rev Endocrinol Metab 13:99–106.  https://doi.org/10.1080/17446651.2018.1434412 CrossRefPubMedGoogle Scholar
  11. Ávalos Y, Kerr B, Maliqueo M, Dorfman M (2018) Cell and molecular mechanisms behind diet-induced hypothalamic inflammation and obesity. J Neuroendocrinol 30:e12598.  https://doi.org/10.1111/jne.12598 CrossRefPubMedGoogle Scholar
  12. Avena NM, Rada P, Hoebel BG (2008) Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 32:20–39.  https://doi.org/10.1016/j.neubiorev.2007.04.019 CrossRefPubMedGoogle Scholar
  13. Ayala-Lopez N, Martini M, Jackson WF, Darios E, Burnett R, Seitz B, Fink GD, Watts SW (2014) Perivascular adipose tissue contains functional catecholamines. Pharmacol Res Perspect 2:e00041.  https://doi.org/10.1002/prp2.41 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Azzinnari D, Sigrist H, Staehli S, Palme R, Hildebrandt T, Leparc G, Hengerer B, Seifritz E, Pryce CR (2014) Mouse social stress induces increased fear conditioning, helplessness and fatigue to physical challenge together with markers of altered immune and dopamine function. Neuropharmacology 85:328–341.  https://doi.org/10.1016/j.neuropharm.2014.05.039 CrossRefPubMedGoogle Scholar
  15. Bahar A, Kashi Z, Daneshpour E, Akha O, Ala S (2016) Effects of cabergoline on blood glucose levels in type 2 diabetic patients: a double-blind controlled clinical trial. Medicine (Baltimore) 95:e4818.  https://doi.org/10.1097/MD.0000000000004818 CrossRefGoogle Scholar
  16. Baik JH (2013) Dopamine signaling in food addiction: role of dopamine D2 receptors. BMB Rep 46:519–526.  https://doi.org/10.5483/BMBRep.2013.46.11.207 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bapat SP, Myoung Suh J, Fang S, Liu S, Zhang Y, Cheng A, Zhou C, Liang Y, LeBlanc M, Liddle C, Atkins AR, Yu RT, Downes M, Evans RM, Zheng Y (2015) Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528:137–141.  https://doi.org/10.1038/nature16151 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bartness TJ, Liu Y, Shrestha YB, Ryu VL (2014) Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 35:473–493.  https://doi.org/10.1016/j.yfrne.2014.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Basu S, Dasgupta PS (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102:113–124.  https://doi.org/10.1016/S0165-5728(99)00176-9 CrossRefPubMedGoogle Scholar
  20. Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors -IUPHAR review 13. Br J Pharmacol 172:1–23.  https://doi.org/10.1111/bph.12906 CrossRefPubMedGoogle Scholar
  21. Bell C (1988) Dopamine release from sympathetic nerve terminals. Prog Neurobiol 30:193–208.  https://doi.org/10.1016/0301-0082(88)90006-8 CrossRefPubMedGoogle Scholar
  22. Bergamini G, Mechtersheimer J, Azzinnari D, Sigrist H, Buerge M, Dallmann R, Freije R, Kouraki A, Opacka-Juffry J, Seifritz E, Ferger B, Suter T, Pryce CR (2018) Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behavior in mice. Neurobiol Stress 8:42–56.  https://doi.org/10.1016/j.ynstr.2018.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Besser MJ, Ganor Y, Levite M (2005) Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNF alpha or both. J Neuroimmunol 169:161–171.  https://doi.org/10.1016/j.jneuroim.2005.07.013 CrossRefPubMedGoogle Scholar
  24. Bierhaus A, Wolf J, Andrassy M, Rohleder N, Humpert PM, Petrov D, Ferstl R, von Eynatten M, Wendt T, Rudofsky G, Joswig M, Morcos M, Schwaninger M, McEwen B, Kirschbaum C, Nawroth PP (2003) A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci U S A 100:1920–1925.  https://doi.org/10.1073/pnas.0438019100 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Blum K, Thanos PK, Gold MS (2014) Dopamine and glucose, obesity, and reward deficiency syndrome. Front Psychol 5:919.  https://doi.org/10.3389/fpsyg.2014.00919 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Boldison J, Wong FS (2016) Immune and pancreatic beta cell interactions in type 1 diabetes. Trends Endocrinol Metab 27:856–867.  https://doi.org/10.1016/j.tem.2016.08.007 CrossRefPubMedGoogle Scholar
  27. Borcherding DC, Hugo ER, Idelman G, De Silva A, Richtand NW, Loftus J, Ben-Jonathan N (2011) Dopamine receptors in human adipocytes: expression and functions. PLoS One 6:e25537.  https://doi.org/10.1371/journal.pone.0025537 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Boutagy NE, McMillan RP, Frisard MI, Hulver MW (2016) Metabolic endotoxemia with obesity: is it real and is it relevant? Biochimie 124:11–20.  https://doi.org/10.1016/j.biochi.2015.06.020 CrossRefPubMedGoogle Scholar
  29. Braune J, Weyer U, Hobusch C, Mauer J, Brüning JC, Bechmann I, Gericke M (2017) IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity. J Immunol 198:2927–2934.  https://doi.org/10.4049/jimmunol.1600476 CrossRefPubMedGoogle Scholar
  30. Brelje TC, Parsons JA, Sorenson RL (1994) Regulation of islet β-cell proliferation by prolactin in rat islets. Diabetes 43:263–273.  https://doi.org/10.2337/diab.43.2.263 CrossRefPubMedGoogle Scholar
  31. Camell CD, Sander J, Spadaro O, Lee A, Nguyen KY, Wing A, Goldberg EL, Youm YH, Brown CW, Elsworth J, Rodeheffer MS, Schultze JL, Dixit VD (2017) Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550:119–123.  https://doi.org/10.1038/nature24022 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot JL, Bouloumié A, Barbatelli G, Cinti S, Svensson PA, Barsh GS, Zucker JD, Basdevant A, Langin D, Clément K (2005) Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54:2277–2286.  https://doi.org/10.2337/diabetes.54.8.2277 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772.  https://doi.org/10.2337/db06-1491 CrossRefPubMedGoogle Scholar
  34. Capellino S, Cosentino M, Luini A, Bombelli R, Lowin T, Cutolo M, Marino F, Straub RH (2014) Increased expression of dopamine receptors in synovial fibroblasts from patients with rheumatoid arthritis: inhibitory effects of dopamine on interleukin-8 and interleukin-6. Arthritis Rheum 66:2685–2693.  https://doi.org/10.1002/art.38746 CrossRefGoogle Scholar
  35. Capuron L, Miller AH (2011) Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 130:226–238.  https://doi.org/10.1016/j.pharmthera.2011.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28:203–209 PMC4367209PubMedPubMedCentralGoogle Scholar
  37. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924.  https://doi.org/10.1038/nn1715 CrossRefPubMedGoogle Scholar
  38. Carlin J, Hill-Smith TE, Lucki I, Reyes TM (2013) Reversal of dopamine system dysfunction in response to high-fat diet. Obesity (Silver Spring) 21:2513–2521.  https://doi.org/10.1002/oby.20374 CrossRefGoogle Scholar
  39. Carrero JA, McCarthy DP, Ferris ST, Wan X, Hu H, Zinselmeyer BH, Vomund AN, Unanue ER (2017) Resident macrophages of pancreatic islets have a seminal role in the initiation of autoimmune diabetes of NOD mice. Proc Natl Acad Sci U S A 114:E10418–E10427.  https://doi.org/10.1073/pnas.1713543114 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Chan KL, Cathomas F, Russo SJ (2019) Central and peripheral inflammation Link metabolic syndrome and major depressive disorder. Physiology (Bethesda) 34:123–133.  https://doi.org/10.1152/physiol.00047.2018 CrossRefGoogle Scholar
  41. Chen PS, Yang YK, Yeh TL, Lee IH, Yao WJ, Chiu NT, Lu RB (2008) Correlation between body mass index and striatal dopamine transporter availability in healthy volunteers--a SPECT study. Neuroimage 40:275–279.  https://doi.org/10.1016/j.neuroimage.2007.11.007 CrossRefPubMedGoogle Scholar
  42. Chen Y, Hong F, Chen H, Fan RF, Zhang XL, Zhang Y, Zhu JX (2014) Distinctive expression and cellular distribution of dopamine receptors in the pancreatic islets of rats. Cell Tissue Res 357:597–606.  https://doi.org/10.1007/s00441-014-1894-9 CrossRefPubMedGoogle Scholar
  43. Cho J, Kim D, Jang J, Kim J, Kang H (2018) Treadmill running suppresses the vulnerability of dopamine D2 receptor deficiency to obesity and metabolic complications: a pilot study. J Exerc Nutr Biochem 22:42–50.  https://doi.org/10.20463/jenb.2018.0023 CrossRefGoogle Scholar
  44. Choi HN, Kang MJ, Lee SJ, Kim JI (2014) Ameliorative effect of myricetin on insulin resistance in mice fed a high-fat, high-sucrose diet. Nutr Res Pract 8:544–549.  https://doi.org/10.4162/nrp.2014.8.5.544 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Church TS, Thomas DM, Tudor-Locke C, Katzmarzyk PT, Earnest CP, Rodarte RQ, Martin CK, Blair SN, Bouchard C (2011) Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS One 6(5):e19657CrossRefPubMedPubMedCentralGoogle Scholar
  46. Cincotta AH, Meier AH (1996) Bromocriptine (Ergoset) reduces body weight and improves glucose tolerance in obese subjects. Diabetes Care 19:667–670.  https://doi.org/10.2337/diacare.19.6.667 CrossRefPubMedGoogle Scholar
  47. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46:2347–2355.  https://doi.org/10.1194/jlr.M500294-JLR200 CrossRefPubMedGoogle Scholar
  48. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, Mathis D (2012) PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486:549–553.  https://doi.org/10.1038/nature11132 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Cosentino M, Marino F (2013) Adrenergic and dopaminergic modulation of immunity in multiple sclerosis: teaching old drugs new tricks? J NeuroImmune Pharmacol 8:163–179.  https://doi.org/10.1007/s11481-012-9410-z CrossRefPubMedGoogle Scholar
  50. Cosentino M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Frigo G (2002) Stimulation with phytohaemagglutinin induces the synthesis of catecholamines in human peripheral blood mononuclear cells: role of protein kinase C and contribution of intracellular calcium. J Neuroimmunol 125:125–133.  https://doi.org/10.1016/S0165-5728(02)00019-X CrossRefPubMedGoogle Scholar
  51. Cosentino M, Marino F, Bombelli R, Ferrari M, Lecchini S, Frigo G (2003) Unravelling dopamine (and catecholamine) physiopharmacology in lymphocytes: open questions. Trends Immunol 24:581–582.  https://doi.org/10.1016/j.it.2003.09.002 CrossRefPubMedGoogle Scholar
  52. Cosentino M, Zaffaroni M, Ferrari M, Marino F, Bombelli R, Rasini E, Frigo G, Ghezzi A, Comi G, Lecchini S (2005) Interferon-gamma and interferon-beta affect endogenous catecholamines in human peripheral blood mononuclear cells: implications for multiple sclerosis. J Neuroimmunol 162:112–121.  https://doi.org/10.1016/j.jneuroim.2005.01.019 CrossRefPubMedGoogle Scholar
  53. Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4+ CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109:632–642.  https://doi.org/10.1182/blood-2006-01-028423 CrossRefPubMedGoogle Scholar
  54. Cosentino M, Zaffaroni M, Trojano M, Giorelli M, Pica C, Rasini E, Bombelli R, Ferrari M, Ghezzi A, Comi G, Livrea P, Lecchini S, Marino F (2012) Dopaminergic modulation of CD4+CD25(high) regulatory T lymphocytes in multiple sclerosis patients during interferon-β therapy. Neuroimmunomodulation 19:283–292.  https://doi.org/10.1159/000336981 CrossRefPubMedGoogle Scholar
  55. Cosentino M, Zaffaroni M, Marino F (2014) Levels of mRNA for dopaminergic receptor D5 in circulating lymphocytes may be associated with subsequent response to interferon-β in patients with multiple sclerosis. J Neuroimmunol 277:193–196.  https://doi.org/10.1016/j.jneuroim.2014.10.009 CrossRefPubMedGoogle Scholar
  56. Cosentino M, Marino F, Maestroni GJ (2015) Sympathoadrenergic modulation of hematopoiesis: a review of available evidence and of therapeutic perspectives. Front Cell Neurosci 9:302.  https://doi.org/10.3389/fncel.2015.00302 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Cuevas S, Villar VA, Jose PA, Armando I (2013) Renal dopamine receptors, oxidative stress, and hypertension. Int J Mol Sci 14:17553–17572.  https://doi.org/10.3390/ijms140917553 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Curat CA, Wegner V, Sengenès C, Miranville A, Tonus C, Busse R, Bouloumié A (2006) Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 49:744–747.  https://doi.org/10.1007/s00125-006-0173-z CrossRefPubMedGoogle Scholar
  59. de Git KC, Adan RA (2015) Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obes Rev 16:207–224.  https://doi.org/10.1111/obr.12243 CrossRefPubMedGoogle Scholar
  60. De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, Saad MJ, Velloso LA (2005) Consumption of a fat rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146:4192–4199.  https://doi.org/10.1210/en.2004-1520 CrossRefPubMedGoogle Scholar
  61. DeFronzo RA (2011) Bromocriptine: a sympatholytic, D2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care 34:789–794.  https://doi.org/10.2337/dc11-0064 CrossRefPubMedPubMedCentralGoogle Scholar
  62. DeFuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Nersesova YR, Markham D, Strissel KJ, Watkins AA, Zhu M, Allen J, Bouchard J, Toraldo G, Jasuja R, Obin MS, McDonnell ME, Apovian C, Denis GV, Nikolajczyk BS (2013) B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci U S A 110:5133–5138.  https://doi.org/10.1073/pnas.1215840110 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Deng C (2013) Effects of antipsychotic medications on appetite, weight, and insulin resistance. Endocrinol Metab Clin N Am 42:545–563.  https://doi.org/10.1016/j.ecl.2013.05.006 CrossRefGoogle Scholar
  64. Deng T, Lyon CJ, Minze LJ, Lin J, Zou J, Liu JZ, Ren Y, Yin Z, Hamilton DJ, Reardon PR, Sherman V, Wang HY, Phillips KJ, Webb P, Wong ST, Wang RF, Hsueh WA (2013) Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab 17:411–422.  https://doi.org/10.1016/j.cmet.2013.02.009 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Diepenbroek C, van der Plasse G, Eggels L, Rijnsburger M, Feenstra MG, Kalsbeek A, Denys D, Fliers E, Serlie MJ, la Fleur SE (2013) Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats. Front Neurosci 7:226.  https://doi.org/10.3389/fnins.2013.00226 CrossRefPubMedPubMedCentralGoogle Scholar
  66. DiFeliceantonio AG, Coppin G, Rigoux L, Edwin Thanarajah S, Dagher A, Tittgemeyer M, Small DM (2018) Supra-additive effects of combining fat and carbohydrate on food reward. Cell Metab 28:33–44.e3.  https://doi.org/10.1016/j.cmet.2018.05.018 CrossRefPubMedGoogle Scholar
  67. dos Santos Silva CM, Barbosa FR, Lima GA, Warszawski L, Fontes R, Domingues RC, Gadelha MR (2011) BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists. Obesity 19:800–805.  https://doi.org/10.1038/oby.2010.150 CrossRefPubMedGoogle Scholar
  68. Dunn JP, Kessler RM, Feurer ID, Volkow ND, Patterson BW, Ansari MS, Li R, Marks-Shulman P, Abumrad NN (2012) Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity. Diabetes Care 35:1105–1111.  https://doi.org/10.2337/dc11-2250 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Dygai AM, Skurikhin EG (2011) Monoaminergic regulation of hemopoiesis under extreme conditions. Bull Exp Biol Med 151:171–178CrossRefPubMedGoogle Scholar
  70. Eguchi K, Nagai R (2017) Islet inflammation in type 2 diabetes and physiology. J Clin Invest 127:14–23.  https://doi.org/10.1172/JCI88877 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Eisenhofer G, Goldstein DS (2004) 45 - peripheral dopamine systems. In: Robertson D, Biaggioni I, Burnstock G, Low PA (eds) Primer on the autonomic nervous system, Second edn. Academic Press, San Diego, pp 176–177.  https://doi.org/10.1016/B978-012589762-4/50046-3
  72. Eisenhofer G, Aneman A, Friberg P, Hooper D, Fåndriks L, Lonroth H, Hunyady B, Mezey E (1997) Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab 82:3864–3871.  https://doi.org/10.1210/jcem.82.11.4339 CrossRefPubMedGoogle Scholar
  73. Eliassi A, Aleali F, Ghasemi T (2008) Peripheral dopamine D2-like receptors have a regulatory effect on carbachol-, histamine- and pentagastrin-stimulated gastric acid secretion. Clin Exp Pharmacol Physiol 35:1065–1070.  https://doi.org/10.1111/j.1440-1681.2008.04961.x CrossRefPubMedGoogle Scholar
  74. Epstein DH, Shaham Y (2010) Cheesecake-eating rats and the question of food addiction. Nat Neurosci 13:529–531.  https://doi.org/10.1038/nn0510-529 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Fan R, Toubal A, Goñi S, Drareni K, Huang Z, Alzaid F, Ballaire R, Ancel P, Liang N, Damdimopoulos A, Hainault I, Soprani A, Aron-Wisnewsky J, Foufelle F, Lawrence T, Gautier JF, Venteclef N, Treuter E (2016) Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes. Nat Med 22:780–791.  https://doi.org/10.1038/nm.4114 CrossRefPubMedGoogle Scholar
  76. Farino ZJ, Morgenstern TJ, Maffei A, Quick M, de Solis AJ, Wiriyasermkul P, Freyberg RJ, Aslanoglou D, Sorisio D, Inbar BP, Free RB, Donthamsetti P, Mosharov EV, Kellendonk C, Schwartz GJ, Sibley DR, Schmauss C, Zeltser LM, Moore H, Harris PE, Javitch JA, Freyberg Z (2019) New roles for dopamine D2 and D3 receptors in pancreatic beta cell insulin secretion. Mol Psychiatry.  https://doi.org/10.1038/s41380-018-0344-6
  77. Feldman JM, Lebovitz HE (1972) Structural determinants of indole amine action on in vitro insulin release. Endocrinology 91:809–816.  https://doi.org/10.1210/endo-91-3-809 CrossRefPubMedGoogle Scholar
  78. Feldman RS, Meyer JS, Quenzer LF (1997) Catecholamines. In: Principles of neuropsychopharmacology. Sinauer Associates Inc, Sunderland, Massachusets, USA, pp 277–344Google Scholar
  79. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C, Shoelson S, Mathis D (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15:930–939.  https://doi.org/10.1038/nm.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Flierl MA, Rittirsch D, Nadeau BA, Chen AJ, Sarma JV, Zetoune FS, McGuire SR, List RP, Day DE, Hoesel LM, Gao H, Van Rooijen N, Huber-Lang MS, Neubig RR, Ward PA (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449:721–725.  https://doi.org/10.1038/nature06185 CrossRefPubMedGoogle Scholar
  81. Flierl MA, Rittirsch D, Huber-Lang M, Sarma JV, Ward PA (2008) Catecholamines – crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening Pandora’s box? Mol Med 14:195–204.  https://doi.org/10.2119/2007-00105.Flierl CrossRefPubMedGoogle Scholar
  82. Fuemmeler BF, Agurs-Collins TD, McClernon FJ, Kollins SH, Kail ME, Bergen AW, Ashley-Koch AE (2008) Genes implicated in serotonergic and dopaminergic functioning predict BMI categories. Obesity (Silver Spring) 16:348–355.  https://doi.org/10.1038/oby.2007.65 CrossRefGoogle Scholar
  83. Furigo IC, Suzuki MF, Oliveira JE, Ramos-Lobo AM, Teixeira PDS, Pedroso JA, de Alencar A, Zampieri TT, Buonfiglio DC, Quaresma PGF, Prada PO, Bartolini P, Soares CRJ, Donato J Jr (2019) Suppression of prolactin secretion partially explains the antidiabetic effect of bromocriptine in Ob/Ob mice. Endocrinology 160:193–204.  https://doi.org/10.1210/en.2018-00629 CrossRefPubMedGoogle Scholar
  84. GBD 2015 Obesity Collaborators (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377:13–27.  https://doi.org/10.1056/NEJMoa1614362 CrossRefGoogle Scholar
  85. Ghosh S, Bouchard C (2017) Convergence between biological, behavioural and genetic determinants of obesity. Nat Rev Genet 18:731–748.  https://doi.org/10.1038/nrg.2017.72 CrossRefPubMedGoogle Scholar
  86. Gibson CD, Karmally W, McMahon DJ, Wardlaw SL, Korner J (2012) Randomized pilot study of cabergoline, a dopamine receptor agonist: effects on body weight and glucose tolerance in obese adults. Diabetes Obes Metab 14(4):335–340.  https://doi.org/10.1111/j.1463-1326.2011.01534.x CrossRefPubMedGoogle Scholar
  87. Giorelli M, Livrea P, Trojano M (2005) Dopamine fails to regulate activation of peripheral blood lymphocytes from multiple sclerosis patients: effects of IFN-beta. J Interf Cytokine Res 25:395–406.  https://doi.org/10.1089/jir.2005.25.395 CrossRefGoogle Scholar
  88. Goldstein DS, Holmes C (2008) Neuronal source of plasma dopamine. Clin Chem 54:1864–1871.  https://doi.org/10.1373/clinchem.2008.107193 CrossRefPubMedPubMedCentralGoogle Scholar
  89. González H, Contreras F, Prado C, Elgueta D, Franz D, Bernales S, Pacheco R (2013) Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson’s disease. J Immunol 190:5048–5056.  https://doi.org/10.4049/jimmunol.1203121 CrossRefPubMedGoogle Scholar
  90. Greenberg JA (2013) Obesity and early mortality in the United States. Obesity (Silver Spring) 21:405–412.  https://doi.org/10.1002/oby.20023 CrossRefGoogle Scholar
  91. Guo G, North K, Choi S (2006) DRD4 gene variant associated with body mass: the National Longitudinal Study of adolescent health. Hum Mutat 27:236–241.  https://doi.org/10.1002/humu.20282 CrossRefPubMedGoogle Scholar
  92. Haase J, Weyer U, Immig K, Klöting N, Blüher M, Eilers J, Bechmann I, Gericke M (2014) Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia 57:562–571.  https://doi.org/10.1007/s00125-013-3139-y CrossRefPubMedGoogle Scholar
  93. Haltia LT, Rinne JO, Merisaari H, Maguire RP, Savontaus E, Helin S, Någren K, Kaasinen V (2007) Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse 61:748–756.  https://doi.org/10.1002/syn.20418 CrossRefPubMedGoogle Scholar
  94. Han W, Tellez LA, Niu J, Medina S, Ferreira TL, Zhang X, Su J, Tong J, Schwartz GJ, van den Pol A, de Araujo IE (2016) Striatal dopamine links gastrointestinal rerouting to altered sweet appetite. Cell Metab 23:103–112.  https://doi.org/10.1016/j.cmet.2015.10.009 CrossRefPubMedGoogle Scholar
  95. Harman-Boehm I, Blüher M, Redel H, Sion-Vardy N, Ovadia S, Avinoach E, Shai I, Klöting N, Stumvoll M, Bashan N, Rudich A (2007) Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab 92:2240–2247.  https://doi.org/10.1210/jc.2006-1811 CrossRefPubMedGoogle Scholar
  96. Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A, von Zur MC, Bode C, Fricchione GL, Denninger J, Lin CP, Vinegoni C, Libby P, Swirski FK, Weissleder R, Nahrendorf M (2014) Chronic variable stress activates hematopoietic stem cells. Nat Med 20:754–758.  https://doi.org/10.1038/nm.3589 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Heni M, Kullmann S, Ahlqvist E, Wagner R, Machicao F, Staiger H, Häring HU, Almgren P, Groop LC, Small DM, Fritsche A, Preissl H (2016) Interaction between the obesity-risk gene FTO and the dopamine D2 receptor gene ANKK1/TaqIA on insulin sensitivity. Diabetologia 59:2622–2631.  https://doi.org/10.1007/s00125-016-4095-0 CrossRefPubMedGoogle Scholar
  98. Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L, Brönneke HS, Dietrich MO, Jordan SD, Saletore Y, Elemento O, Belgardt BF, Franz T, Horvath TL, Rüther U, Jaffrey SR, Kloppenburg P, Brüning JC (2013) The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci 16:1042–1048.  https://doi.org/10.1038/nn.3449 CrossRefPubMedGoogle Scholar
  99. Hevener AL, Olefsky JM, Reichart D, Nguyen MT, Bandyopadyhay G, Leung HY, Watt MJ, Benner C, Febbraio MA, Nguyen AK, Folian B, Subramaniam S, Gonzalez FJ, Glass CK, Ricote M (2007) Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest 117:1658–1669.  https://doi.org/10.1172/JCI31561 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Heymsfield SB, Wadden TA (2017) Mechanisms, pathophysiology, and Management of Obesity. N Engl J Med 376:254–266.  https://doi.org/10.1056/NEJMra1514009 CrossRefPubMedGoogle Scholar
  101. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867.  https://doi.org/10.1038/nature05485 CrossRefPubMedGoogle Scholar
  102. Hotamisligil GS (2017a) Inflammation, metaflammation and immunometabolic disorders. Nature 542:177–185.  https://doi.org/10.1038/nature21363 CrossRefPubMedGoogle Scholar
  103. Hotamisligil GS (2017b) Foundations of Immunometabolism and implications for metabolic health and disease. Immunity 47:406–420.  https://doi.org/10.1016/j.immuni.2017.08.009 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Huang XF, Zavitsanou K, Huang X, Yu Y, Wang H, Chen F, Lawrence AJ, Deng C (2006) Dopamine transporter and D2receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity. Behav Brain Res 175:415–419.  https://doi.org/10.1016/j.bbr.2006.08.034 CrossRefPubMedGoogle Scholar
  105. Huang S, Rutkowsky JM, Snodgrass RG, Ono-Moore KD, Schneider DA, Newman JW, Adams SH, Hwang DH (2012) Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res 53:2002–2013.  https://doi.org/10.1194/jlr.D029546 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Jafari M, Ahangari G, Saberi M, Samangoui S, Torabi R, Zouali M (2013) Distorted expression of dopamine receptor genes in systemic lupus erythematosus. Immunobiology 218:979–983.  https://doi.org/10.1016/j.imbio.2012.11.002 CrossRefPubMedGoogle Scholar
  107. Jetton TL, Liang Y, Cincotta AH (2001) Systemic treatment with sympatholytic dopamine agonists improves aberrant β-cell hyperplasia and GLUT2, glucokinase, and insulin immunoreactive levels in Ob/Ob mice. Metabolism 50:1377–1384.  https://doi.org/10.1053/meta.2001.26741 CrossRefPubMedGoogle Scholar
  108. Jiang X, Konkalmatt P, Yang Y, Gildea J, Jones JE, Cuevas S, Felder RA, Jose PA, Armando I (2014) Single-nucleotide polymorphisms of the dopamine D2 receptor increase inflammation and fibrosis in human renal proximal tubule cells. Hypertension 63:e74–e80.  https://doi.org/10.1161/HYPERTENSIONAHA.113.02569 CrossRefPubMedGoogle Scholar
  109. Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13:635–641.  https://doi.org/10.1038/nn.2519 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Jönsson EG, Nöthen MM, Grünhage F, Farde L, Nakashima Y, Propping P, Sedvall GC (1999) Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry 4:290–296.  https://doi.org/10.1038/sj.mp.4000532 CrossRefPubMedGoogle Scholar
  111. Jose PA, Eisner GM, Felder RA (2003) Regulation of blood pressure by dopamine receptors. Nephron Physiol 95:19–27.  https://doi.org/10.1159/000073676 CrossRefGoogle Scholar
  112. Kaczmarczyk MM, Machaj AS, Chiu GS, Lawson MA, Gainey SJ, York JM, Meling DD, Martin SA, Kwakwa KA, Newman AF, Woods JA, Kelley KW, Wang Y, Miller MJ, Freund GG (2013) Methylphenidate prevents high-fat diet (HFD)-induced learning/memory impairment in juvenile mice. Psychoneuroendocrinology 38:1553–1564.  https://doi.org/10.1016/j.psyneuen.2013.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Kallio KA, Hätönen KA, Lehto M, Salomaa V, Männistö S, Pussinen PJ (2015) Endotoxemia, nutrition, and cardiometabolic disorders. Acta Diabetol 52:395–404.  https://doi.org/10.1007/s00592-014-0662-3 CrossRefPubMedGoogle Scholar
  114. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116:1494–1505.  https://doi.org/10.1172/JCI26498 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Kanneganti TD, Dixit V (2012) Immunological complications of obesity. Nat Immunol 13:707–712.  https://doi.org/10.1038/ni.2343 CrossRefPubMedGoogle Scholar
  116. Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3311.  https://doi.org/10.1523/JNEUROSCI.22-09-03306.2002 CrossRefPubMedGoogle Scholar
  117. Kenny PJ (2011) Reward mechanisms in obesity: new insights and future directions. Neuron 69:664–679.  https://doi.org/10.1016/j.neuron.2011.02.016 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Kenny PJ, Voren G, Johnson PM (2013) Dopamine D2 receptors and striatopallidal transmission in addiction and obesity. Curr Opin Neurobiol 23:535–538.  https://doi.org/10.1016/j.conb.2013.04.012 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Kirchgessner AL, Gershon MD (1990) Innervation of the pancreas by neurons in the gut. J Neurosci 10:1626–1642.  https://doi.org/10.1523/JNEUROSCI.10-05-01626.1990 CrossRefPubMedGoogle Scholar
  120. Kivipelto M, Mangialasche F, Ngandu T (2018) Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol 14:653–666.  https://doi.org/10.1038/s41582-018-0070-3 CrossRefPubMedGoogle Scholar
  121. Kohlie R, Perwitz N, Resch J, Schmid SM, Lehnert H, Klein J, Iwen KA (2017) Dopamine directly increases mitochondrial mass and thermogenesis in brown adipocytes. J Mol Endocrinol 58:57–66.  https://doi.org/10.1530/JME-16-0159 CrossRefPubMedGoogle Scholar
  122. Kok P, Roelfsema F, Frölich M, van Pelt J, Stokkel MP, Meinders AE, Pijl H (2006) Activation of dopamine D2 receptors simultaneously ameliorates various metabolic features of obese women. Am J Physiol Endocrinol Metab 291:E1038–E1043.  https://doi.org/10.1152/ajpendo.00567.2005 CrossRefPubMedGoogle Scholar
  123. Kolb R, Sutterwala FS, Zhang W (2016) Obesity and cancer: inflammation bridges the two. Curr Opin Pharmacol 29:77–89.  https://doi.org/10.1016/j.coph.2016.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, Zechner R, Ferrante AW Jr (2010) Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest 120:3466–3479.  https://doi.org/10.1172/JCI42845 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, Schoenfelt KQ, Kuzma JN, Larson I, Billing PS, Landerholm RW, Crouthamel M, Gozal D, Hwang S, Singh PK, Becker L (2014) Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab 20:614–625.  https://doi.org/10.1016/j.cmet.2014.08.010 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Kuntz A, Richins CA (1945) Innervation of the bone marrow. J Comp Neurol 83:213–222.  https://doi.org/10.1002/cne.900830302 CrossRefPubMedGoogle Scholar
  127. Kustrimovic N, Rasini E, Legnaro M, Bombelli R, Aleksic I, Blandini F, Comi C, Mauri M, Minafra B, Riboldazzi G, Sanchez-Guajardo V, Marino F, Cosentino M (2016) Dopaminergic receptors on CD4+ T naive and memory lymphocytes correlate with motor impairment in patients with Parkinson's disease. Sci Rep 6:33738.  https://doi.org/10.1038/srep33738 CrossRefPubMedPubMedCentralGoogle Scholar
  128. la Fleur SE, Luijendijk MC, van der Zwaal EM, Brans MA, Adan RA (2014) The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns. Int J Obes 38:643–649.  https://doi.org/10.1038/ijo.2013.159 CrossRefGoogle Scholar
  129. Laermans J, Depoortere I (2016) Chronobesity: role of the circadian system in the obesity epidemic. Obes Rev 17:108–125.  https://doi.org/10.1111/obr.12351 CrossRefPubMedGoogle Scholar
  130. Lafontan M (2012) Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Phys Cell Phys 302:C327–C359.  https://doi.org/10.1152/ajpcell.00168.2011 CrossRefGoogle Scholar
  131. Lambert GW, Straznicky NE, Lambert EA, Dixon JB, Schlaich MP (2010) Sympathetic nervous activation in obesity and the metabolic syndrome--causes, consequences and therapeutic implications. Pharmacol Ther 126:159–172.  https://doi.org/10.1016/j.pharmthera.2010.02.002 CrossRefPubMedGoogle Scholar
  132. Lamos EM, Levitt DL, Munir KM (2016) A review of dopamine agonist therapy in type 2 diabetes and effects on cardio–metabolic parameters. Prim Care Diabetes 10:60–65.  https://doi.org/10.1016/j.pcd.2015.10.008
  133. Lasselin J, Capuron L (2014) Chronic low-grade inflammation in metabolic disorders: relevance for behavioral symptoms. Neuroimmunomodulation 21:95–101.  https://doi.org/10.1159/000356535 CrossRefPubMedGoogle Scholar
  134. Lassenius MI, Pietiläinen KH, Kaartinen K, Pussinen PJ, Syrjänen J, Forsblom C, Pörsti I, Rissanen A, Kaprio J, Mustonen J, Groop PH, Lehto M, FinnDiane Study Group (2011) Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 34:1809–1815.  https://doi.org/10.2337/dc10-2197 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Leblanc H, Lachelin GC, Abu-Fadil S, Yen SS (1977) The effect of dopamine infusion on insulin and glucagon secretion in man. J Clin Endocrinol Metab 44:196–198.  https://doi.org/10.1210/jcem-44-1-196 CrossRefPubMedGoogle Scholar
  136. Lee DE, Kehlenbrink S, Lee H, Hawkins M, Yudkin JS (2009) Getting the message across: mechanisms of physiological cross talk by adipose tissue. Am J Physiol Endocrinol Metab 296:E1210–E1229.  https://doi.org/10.1152/ajpendo.00015.2009 CrossRefPubMedGoogle Scholar
  137. Lee YS, Wollam J, Olefsky JM (2018) An integrated view of Immunometabolism. Cell 172:22–40.  https://doi.org/10.1016/j.cell.2017.12.025 CrossRefPubMedGoogle Scholar
  138. Leite F, Lima M, Marino F, Cosentino M, Ribeiro L (2016) Dopaminergic receptors and tyrosine hydroxylase expression in peripheral blood mononuclear cells: a distinct pattern in central obesity. PLoS One 11:e0147483.  https://doi.org/10.1371/journal.pone.0147483 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Leite F, Leite Â, Santos A, Lima M, Barbosa J, Cosentino M, Ribeiro L (2017a) Predictors of subclinical inflammatory obesity: plasma levels of leptin, very Low-density lipoprotein cholesterol and CD14 expression of CD16+ monocytes. Obes Facts 10:308–322.  https://doi.org/10.1159/000464294 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Leite F, Lima M, Marino F, Cosentino M, Ribeiro L (2017b) β2 adrenoceptors are underexpressed in peripheral blood mononuclear cells and associated with a better metabolic profile in central obesity. Int J Med Sci 14:853–861.  https://doi.org/10.7150/ijms.19638 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Leite F, Leite Â, Rasini E, Gaiazzi M, Ribeiro L, Marino F, Cosentino M (2018) Dopaminergic pathways in obesity-associated immuno-metabolic depression. Psychol Med 48:2273–2275.  https://doi.org/10.1017/S0033291718001587 CrossRefPubMedGoogle Scholar
  142. Levitan RD, Masellis M, Lam RW, Muglia P, Basile VS, Jain U, Kaplan AS, Tharmalingam S, Kennedy SH, Kennedy JL (2004) Childhood inattention and dysphoria and adult obesity associated with the dopamine D4 receptor gene in overeating women with seasonal affective disorder. Neuropsychopharmacology 29:179–186.  https://doi.org/10.1038/sj.npp.1300314 CrossRefPubMedGoogle Scholar
  143. Levite M (2012) Nerve-driven immunity neurotransmitters and neuropeptides in the immune system. In: Nerve-Driven Immunology Springer (ed). Vienna, Austria and New York, USA, pp 1–45Google Scholar
  144. Levite M (2016) Dopamine and T cells: receptors, direct and potent effects, endogenous production and abnormalities in autoimmune, neurological and psychiatric diseases. Acta Physiol (Oxford) 216:42–89.  https://doi.org/10.1111/apha.12476 CrossRefGoogle Scholar
  145. L'homme L, Esser N, Riva L, Scheen A, Paquot N, Piette J, Legrand-Poels S (2013) Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages. J Lipid Res 54:2998–3008.  https://doi.org/10.1194/jlr.M037861 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Li W, Li J, Sama AE, Wang H (2013) Carbenoxolone blocks endotoxin-induced protein kinase R (PKR) activation and high mobility group box 1 (HMGB1) release. Mol Med 19:203–211.  https://doi.org/10.2119/molmed.2013.00064 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Liu YZ, Wang YX, Jiang CL (2017) Inflammation: the common pathway of stress-related diseases. Front Hum Neurosci 11:316.  https://doi.org/10.3389/fnhum.2017.00316 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Lovallo WR, Buchanan TW (2017) Stress hormones in psychophysiological research: emotional, behavioral, and cognitive implications. In: Cacioppo JT, Tassinary LG, Berntson GG (eds) Handbook of psychophysiology, 4th edn. Cambridge University Press, New York, NY, USA, pp 465–494Google Scholar
  149. Lumeng CN, Bodzin JL, Saltiel AR (2007a) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184.  https://doi.org/10.1172/JCI29881 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR (2007b) Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56:16–23.  https://doi.org/10.2337/db06-1076 CrossRefPubMedGoogle Scholar
  151. Maestroni GJ, Cosentino M, Marino F, Togni M, Conti A, Lecchini S, Frigo G (1998) Neural and endogenous catecholamines in the bone marrow. Circadian association of norepinephrine with hematopoiesis? Exp Hematol 26:1172–1177 PMID: 9808057PubMedGoogle Scholar
  152. Magro F, Cunha E, Araujo F, Meireles E, Pereira P, Dinis-Ribeiro M, Veloso FT, Medeiros R, Soares-da-Silva P (2006) Dopamine D2 receptor polymorphisms in inflammatory bowel disease and the refractory response to treatment. Dig Dis Sci 51:2039–2044.  https://doi.org/10.1007/s10620-006-9168-3 CrossRefPubMedGoogle Scholar
  153. Marino F, Cosentino M (2013) Adrenergic modulation of immune cells: an update. Amino Acids 45:55–71.  https://doi.org/10.1007/s00726-011-1186-6 CrossRefPubMedGoogle Scholar
  154. Marino F, Cosentino M (2016) Multiple sclerosis: repurposing dopaminergic drugs for MS–the evidence mounts. Nat Rev Neurol 12:191–192.  https://doi.org/10.1038/nrneurol.2016.33 CrossRefPubMedGoogle Scholar
  155. Matt SM, Gaskill PJ (2019) Where is dopamine and how do immune cells see it?: dopamine-mediated immune cell function in health and disease. J Neuroimmune Pharmacol.  https://doi.org/10.1007/s11481-019-09851-4
  156. McKenna F, McLaughlin PJ, Lewis BJ, Sibbring GC, Cummerson JA, Bowen-Jones D, Moots RJ (2002) Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J Neuroimmunol 132:34–40.  https://doi.org/10.1016/S0165-5728(02)00280-1 CrossRefPubMedGoogle Scholar
  157. McMurray RW (2001) Bromocriptine in rheumatic and autoimmune diseases. Semin Arthritis Rheum 31:21–32.  https://doi.org/10.1053/sarh.2001.25482 CrossRefPubMedGoogle Scholar
  158. McQuade JA, Benoit SC, Xu M, Woods SC, Seeley RJ (2004) High fat diet induced adiposity in mice with targeted disruption of the dopamine-3 receptor gene. Behav Brain Res 151:313–319.  https://doi.org/10.1016/j.bbr.2003.09.034 CrossRefPubMedGoogle Scholar
  159. Meijer K, de Vries M, Al-Lahham S, Bruinenberg M, Weening D, Dijkstra M, Kloosterhuis N, van der Leij RJ, van der Want H, Kroesen BJ, Vonk R, Rezaee F (2011) Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages. PLoS One 6:e17154.  https://doi.org/10.1371/journal.pone.0017154 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Melkersson K (2004) Clozapine and olanzapine, but not conventional antipsychotics, increase insulin release in vitro. Eur Neuropsychopharmacol 14:115–119.  https://doi.org/10.1016/S0924-977X(03)00072-5 CrossRefPubMedGoogle Scholar
  161. Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, Tsukumo DM, Anhe G, Amaral ME, Takahashi HK, Curi R, Oliveira HC, Carvalheira JB, Bordin S, Saad MJ, Velloso LA (2009) Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 29:359–370.  https://doi.org/10.1523/JNEUROSCI.2760-08.2009 CrossRefPubMedGoogle Scholar
  162. Mobini M, Kashi Z, Mohammad Pour AR, Adibi E (2011) The effect of cabergoline on clinical and laboratory findings in active rheumatoid arthritis. Iran Red Crescent Med J 13:749–750 PMCID: PMC3371879PubMedPubMedCentralGoogle Scholar
  163. Monte SV, Caruana JA, Ghanim H, Sia CL, Korzeniewski K, Schentag JJ, Dandona P (2012) Reduction in endotoxemia, oxidative and inflammatory stress, and insulin resistance after roux-en-Y gastric bypass surgery in patients with morbid obesity and type 2 diabetes mellitus. Surgery 151:587–593.  https://doi.org/10.1016/j.surg.2011.09.038 CrossRefPubMedGoogle Scholar
  164. Mukherjee R, Kanti Barman P, Kumar Thatoi P, Tripathy R, Kumar Das B, Ravindran B (2015) Non-classical monocytes display inflammatory features: validation in Sepsis and systemic lupus erythematous. Sci Rep 5:13886.  https://doi.org/10.1038/srep13886 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Mulders RJ, de Git KCG, Schéle E, Dickson SL, Sanz Y, Adan RAH (2018) Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obes Rev 19:435–451.  https://doi.org/10.1111/obr.12661 CrossRefPubMedGoogle Scholar
  166. Nagareddy PR, Kraakman M, Masters SL, Stirzaker RA, Gorman DJ, Grant RW, Dragoljevic D, Hong ES, Abdel-Latif A, Smyth SS, Choi SH, Korner J, Bornfeldt KE, Fisher EA, Dixit VD, Tall AR, Goldberg IJ, Murphy AJ (2014) Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab 19:821–835.  https://doi.org/10.1016/j.cmet.2014.03.029 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Nakagome K, Imamura M, Okada H, Kawahata K, Inoue T, Hashimoto K, Harada H, Higashi T, Takagi R, Nakano K, Hagiwara K, Kanazawa M, Dohi M, Nagata M, Matsushita S (2011) Dopamine D1-like receptor antagonist attenuates Th17-mediated immune response and ovalbumin antigen-induced neutrophilic airway inflammation. J Immunol 186:5975–5982.  https://doi.org/10.4049/jimmunol.1001274 CrossRefPubMedGoogle Scholar
  168. Nakano K, Higashi T, Takagi R, Hashimoto K, Tanaka Y, Matsushita S (2009) Dopamine released by dendritic cells polarizes Th2 differentiation. Int Immunol 21:645–654.  https://doi.org/10.1093/intimm/dxp033 CrossRefPubMedGoogle Scholar
  169. Nakano K, Yamaoka K, Hanami K, Saito K, Sasaguri Y, Yanagihara N, Tanaka S, Katsuki I, Matsushita S, Tanaka Y (2011) Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J Immunol 186:3745–3752.  https://doi.org/10.4049/jimmunol.1002475 CrossRefPubMedGoogle Scholar
  170. Nguyen MT, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, Zalevsky J, Dahiyat BI, Chi NW, Olefsky JM (2005) JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 280:35361–35371.  https://doi.org/10.1074/jbc.M504611200 CrossRefPubMedGoogle Scholar
  171. Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, Liu-Bryan R, Glass CK, Neels JG, Olefsky JM (2007) A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 282:35279–35292.  https://doi.org/10.1074/jbc.M706762200 CrossRefPubMedGoogle Scholar
  172. Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480:104–108.  https://doi.org/10.1038/nature10653 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Niccolai E, Boem F, Russo E, Amedei A (2019) The gutBrain Axis in the neuropsychological disease model of obesity: a classical movie revised by the emerging director "microbiome". Nutrients 11 pii: E156.  https://doi.org/10.3390/nu11010156
  174. Nicol GE, Yingling MD, Flavin KS, Schweiger JA, Patterson BW, Schechtman KB, Newcomer JW (2018) Metabolic effects of antipsychotics on adiposity and insulin sensitivity in youths: a randomized clinical trial. JAMA Psychiatry 75:788–796.  https://doi.org/10.1001/jamapsychiatry.2018.1088 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Nirenberg MJ, Waters C (2006) Compulsive eating and weight gain related to dopamine agonist use. Mov Disord 21:524–529.  https://doi.org/10.1002/mds.20757 CrossRefPubMedGoogle Scholar
  176. Oh DY, Morinaga H, Talukdar S, Bae EJ, Olefsky JM (2012) Increased macrophage migration into adipose tissue in obese mice. Diabetes 61:346–354.  https://doi.org/10.2337/db11-0860 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Pala NA, Laway BA, Misgar RA, Shah ZA, Gojwari TA, Dar TA (2016) Profile of leptin, adiponectin, and body fat in patients with hyperprolactinemia: response to treatment with cabergoline. Indian J Endocrinol Metab 20:177–181.  https://doi.org/10.4103/2230-8210.176346 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Panariello F, De Luca V, de Bartolomeis A (2011) Weight gain, schizophrenia and antipsychotics: new findings from animal model and pharmacogenomic studies. Schizophr Res Treat 2011:459284–459216.  https://doi.org/10.1155/2011/459284 CrossRefGoogle Scholar
  179. Parada MA, Hernandez L, Paez X, Baptista T, Puig de Parada M, de Quijada M (1989) Mechanism of the body weight increase induced by systemic sulpiride. Pharmacol Biochem Behav 33:45–50.  https://doi.org/10.1016/0091-3057(89)90427-9 CrossRefPubMedGoogle Scholar
  180. Perez-Cornago A, Ramírez MJ, Zulet MÁ, Martinez JÁ (2014) Effect of dietary restriction on peripheral monoamines and anxiety symptoms in obese subjects with metabolic syndrome. Psychoneuroendocrinology 47:98–106.  https://doi.org/10.1016/j.psyneuen.2014.05.003 CrossRefPubMedGoogle Scholar
  181. Pernet A, Hammond VA, Blesa-Malpica G, Burrin J, Orskov H, Alberti KG, Johnston DG (1984) The metabolic effects of dopamine in man. Eur J Clin Pharmacol 26:23–28.  https://doi.org/10.1007/BF00546703 CrossRefPubMedGoogle Scholar
  182. Pinoli M, Marino F, Cosentino M (2017) Dopaminergic regulation of innate immunity: a review. J NeuroImmune Pharmacol 12:602–623.  https://doi.org/10.1007/s11481-017-9749-2 CrossRefPubMedGoogle Scholar
  183. Pirzgalska RM, Seixas E, Seidman JS, Link VM, Sánchez NM, Mahú I, Mendes R, Gres V, Kubasova N, Morris I, Arús BA, Larabee CM, Vasques M, Tortosa F, Sousa AL, Anandan S, Tranfield E, Hahn MK, Iannacone M, Spann NJ, Glass CK, Domingos AI (2017) Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat Med 23:1309–1318.  https://doi.org/10.1038/nm.4422 CrossRefPubMedGoogle Scholar
  184. Poglio S, De Toni F, Lewandowski D, Minot A, Arnaud E, Barroca V, Laharrague P, Casteilla L, Cousin B (2012) In situ production of innate immune cells in murine white adipose tissue. Blood 120:4952–4962.  https://doi.org/10.1182/blood-2012-01-406959 CrossRefPubMedGoogle Scholar
  185. Powell ND, Sloan EK, Bailey MT, Arevalo JM, Miller GE, Chen E, Kobor MS, Reader BF, Sheridan JF, Cole SW (2013) Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis. Proc Natl Acad Sci U S A 110:16574–16579.  https://doi.org/10.1073/pnas.1310655110 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Quickel KE Jr, Feldman JM, Lebovitz HE (1971) Inhibition of insulin secretion by serotonin and dopamine: species variation. Endocrinology 89:1295–1302.  https://doi.org/10.1210/endo-89-5-1295 CrossRefPubMedGoogle Scholar
  187. Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JÁ, MENA Project (2018) Dopamine gene methylation patterns are associated with obesity markers and carbohydrate intake. Brain Behav 8:e01017.  https://doi.org/10.1002/brb3.1017 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214.  https://doi.org/10.1126/science.1241214 CrossRefPubMedGoogle Scholar
  189. Rivera-Iñiguez I, Panduro A, Ramos-Lopez O, Villaseñor-Bayardo SJ, Roman S (2018) DRD2/ANKK1 TaqI A1 polymorphism associates with overconsumption of unhealthy foods and biochemical abnormalities in a Mexican population. Eat Weight Disord.  https://doi.org/10.1007/s40519-018-0596-9
  190. Rogacev KS, Ulrich C, Blömer L, Hornof F, Oster K, Ziegelin M, Cremers B, Grenner Y, Geisel J, Schlitt A, Köhler H, Fliser D, Girndt M, Heine GH (2010) Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur Heart J 31:369–376.  https://doi.org/10.1093/eurheartj/ehp308 CrossRefPubMedGoogle Scholar
  191. Rohleder N (2014) Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom Med 76:181–189.  https://doi.org/10.1097/PSY.0000000000000049 CrossRefPubMedGoogle Scholar
  192. Rosati G, Maioli M, Aiello I, Farris A, Agnetti V (1976) Effects of long-term L-dopa therapy on carbohydrate metabolism in patients with Parkinson’s disease. Eur Neurol 14:229–239.  https://doi.org/10.1159/000114744 CrossRefPubMedGoogle Scholar
  193. Rubí B, Maechler P (2010) Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let's seek the balance. Endocrinology 151:5570–5581.  https://doi.org/10.1210/en.2010-0745 CrossRefPubMedGoogle Scholar
  194. Rubí B, Ljubicic S, Pournourmohammadi S, Carobbio S, Armanet M, Bartley C, Maechler P (2005) Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion. J Biol Chem 280:36824–36832.  https://doi.org/10.1074/jbc.M505560200 CrossRefPubMedGoogle Scholar
  195. Runegaard AH, Fitzpatrick CM, Woldbye DPD, Andreasen JT, Sørensen AT, Gether U (2019) Modulating dopamine signaling and behavior with Chemogenetics: concepts, Progress, and challenges. Pharmacol Rev 71:123–156.  https://doi.org/10.1124/pr.117.013995 CrossRefPubMedGoogle Scholar
  196. Samdani P, Singhal M, Sinha N, Tripathi P, Sharma S, Tikoo K, Rao KVS, Kumar D (2015) A comprehensive inter-tissue crosstalk analysis underlying progression and control of obesity and diabetes. Sci Rep 5:12340.  https://doi.org/10.1038/srep12340 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Sanz Y, Moya-Pérez A (2014) Microbiota, inflammation and obesity. In: Lyte M, Cryan J (eds) Microbial endocrinology: the microbiota-gut-brain Axis in health and disease. Adv Exp Med Biol vol 817, pp 291–317. Springer, New York, NY.  https://doi.org/10.1007/978-1-4939-0897-4_14
  198. Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S (2010) The immunoregulatory role of dopamine: an update. Brain Behav Immun 24:525–528.  https://doi.org/10.1016/j.bbi.2009.10.015 CrossRefPubMedGoogle Scholar
  199. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705.  https://doi.org/10.1016/j.neuron.2012.03.026 CrossRefPubMedPubMedCentralGoogle Scholar
  200. Scheiermann C, Kunisaki Y, Frenette PS (2013) Circadian control of the immune system. Nat Rev Immunol 13:190–198.  https://doi.org/10.1038/nri3386 CrossRefPubMedPubMedCentralGoogle Scholar
  201. Schmid C, Goede DL, Hauser RS, Brandle M (2006) Increased prevalence of high body mass index in patients presenting with pituitary tumours: severe obesity in patients with macroprolactinoma. Swiss Med Wkly 136:254–258.  https://doi.org/10.4414/smw.2006.10955
  202. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25 PMID: 747780PubMedGoogle Scholar
  203. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671.  https://doi.org/10.1038/35007534 CrossRefGoogle Scholar
  204. Sevgi M, Rigoux L, Kühn AB, Mauer J, Schilbach L, Hess ME, Gruendler TO, Ullsperger M, Stephan KE, Brüning JC, Tittgemeyer M (2015) An obesity-predisposing variant of the FTO gene regulates D2R-dependent reward learning. J Neurosci 35:12584–12592.  https://doi.org/10.1523/JNEUROSCI.1589-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  205. Shen J, Obin MS, Zhao L (2013) The gut microbiota, obesity and insulin resistance. Mol Asp Med 34:39–58.  https://doi.org/10.1016/j.mam.2012.11.001 CrossRefGoogle Scholar
  206. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 11:3015–3025.  https://doi.org/10.1172/JCI28898 CrossRefGoogle Scholar
  207. Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, Clement N, Moes S, Colombi M, Meier JA, Swierczynska MM, Jenö P, Beglinger C, Peterli R, Hall MN (2018) Insulin resistance causes inflammation in adipose tissue. J Clin Invest 128:1538–1550.  https://doi.org/10.1172/JCI96139 CrossRefPubMedPubMedCentralGoogle Scholar
  208. Sinasac DS, Riordan JD, Spiezio SH, Yandell BS, Croniger CM, Nadeau JH (2016) Genetic control of obesity, glucose homeostasis, dyslipidemia and fatty liver in a mouse model of diet-induced metabolic syndrome. Int J Obes 40:346–355.  https://doi.org/10.1038/ijo.2015.184 CrossRefGoogle Scholar
  209. Sonnenburg JL, Bäckhed F (2016) Diet-microbiota interactions as moderators of human metabolism. Nature 535:56–64.  https://doi.org/10.1038/nature18846 CrossRefPubMedPubMedCentralGoogle Scholar
  210. Sorenson RL, Stout LE (1995) Prolactin receptors and JAK2 in islets of Langerhans: an immunohistochemical analysis. Endocrinology 136:4092–4098.  https://doi.org/10.1210/endo.136.9.7649117 CrossRefPubMedGoogle Scholar
  211. South T, Huang XF (2008) High-fat diet exposure increases dopamine d2 receptor and decreases dopamine transporter receptor binding density in the nucleus accumbens and caudate putamen of mice. Neurochem Res 33:598–605.  https://doi.org/10.1007/s11064-007-9483-x CrossRefPubMedGoogle Scholar
  212. Spiegel A, Shivtiel S, Kalinkovich A, Ludin A, Netzer N, Goichberg P, Azaria Y, Resnick I, Hardan I, Ben-Hur H, Nagler A, Rubinstein M, Lapidot T (2007) Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol 8:1123–1131.  https://doi.org/10.1038/ni1509 CrossRefPubMedGoogle Scholar
  213. Stice E and Dagher A (2010) Genetic variation in dopaminergic reward in humans. In: Langhans W, Geary N (eds) Frontiers in eating and weight regulation. Forum Nutrition, Karger, Basel, vol 63, pp 176–185.  https://doi.org/10.1159/000264405
  214. Stice E, Spoor S, Bohon C, Small DM (2008) Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 322:449–452.  https://doi.org/10.1126/science.1161550 CrossRefPubMedGoogle Scholar
  215. Stice E, Yokum S, Blum K, Bohon CJ (2010) Weight gain is associated with reduced striatal response to palatable food. J Neurosci 30:13105–13109.  https://doi.org/10.1523/JNEUROSCI.2105-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  216. Stice E, Yokum S, Burger KS, Epstein LH, Small DM (2011) Youth at risk for obesity show greater activation of striatal and somatosensory regions to food. J Neurosci 31:4360–4366.  https://doi.org/10.1523/JNEUROSCI.6604-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  217. Stice E, Figlewicz DP, Gosnell BA, Levine AS, Pratt WE (2013) The contribution of brain reward circuits to the obesity epidemic. Neurosci Biobehav Rev 37:2047–2058.  https://doi.org/10.1016/j.neubiorev.2012.12.001 CrossRefPubMedGoogle Scholar
  218. Stouffer MA, Woods CA, Patel JC, Lee CR, Witkovsky P, Bao L, Machold RP, Jones KT, de Vaca SC, Reith MEA, Carr KD, Rice ME (2015) Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat Commun 6:8543–8543.  https://doi.org/10.1038/ncomms9543 CrossRefPubMedPubMedCentralGoogle Scholar
  219. Sun X, Luquet S, Small DM (2017) DRD2: bridging the genome and Ingestive behavior. Trends Cogn Sci 21:372–384.  https://doi.org/10.1016/j.tics.2017.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  220. Sun L, Ma L, Ma Y, Zhang F, Zhao C, Nie Y (2018) Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell 9:397–403.  https://doi.org/10.1007/s13238-018-0546-3
  221. Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T (2018) Bidirectional microglia-neuron communication in health and disease. Front Cell Neurosci 12:323.  https://doi.org/10.3389/fncel.2018.00323 CrossRefPubMedPubMedCentralGoogle Scholar
  222. Tayebati SK, Lokhandwala MF, Amenta F (2011) Dopamine and vascular dynamics control: present status and future perspectives. Curr Neurovasc Res 8:246–257.  https://doi.org/10.2174/156720211796558032 CrossRefPubMedGoogle Scholar
  223. Teitelman G, Joh TH, Reis DJ (1981) Transformation of catecholaminergic precursors into glucagon (A) cells in mouse embryonic pancreas. Proc Natl Acad Sci USA 78:5225–5229. PMCID: PMC320382Google Scholar
  224. Tellez LA, Medina S, Han W, Ferreira JG, Licona-Limón P, Ren X, Lam TT, Schwartz GJ, de Araujo IE (2013) A gut lipid messenger links excess dietary fat to dopamine deficiency. Science 341:800–802.  https://doi.org/10.1126/science.1239275 CrossRefPubMedGoogle Scholar
  225. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR, Nguyen HT, Fischer JD, Matsen ME, Wisse BE, Morton GJ, Horvath TL, Baskin DG, Tschöp MH, Schwartz MW (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122:153–162.  https://doi.org/10.1172/JCI59660 CrossRefPubMedGoogle Scholar
  226. Thaler B, Hohensinner PJ, Krychtiuk KA, Matzneller P, Koller L, Brekalo M, Maurer G, Huber K, Zeitlinger M, Jilma B, Wojta J, Speidl WS (2016) Differential in vivo activation of monocyte subsets during low-grade inflammation through experimental endotoxemia in humans. Sci Rep 6:30162.  https://doi.org/10.1038/srep30162 CrossRefPubMedPubMedCentralGoogle Scholar
  227. Thompson J, Thomas N, Singleton A, Piggott M, Lloyd S, Perry EK, Morris CM, Perry RH, Ferrier IN, Court JA (1997) D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 7:479–484.  https://doi.org/10.1097/00008571-199712000-00006 CrossRefPubMedGoogle Scholar
  228. Timper K, Brüning JC (2017) Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech 10:679–689.  https://doi.org/10.1242/dmm.026609 CrossRefPubMedPubMedCentralGoogle Scholar
  229. Torres–Fuentes C, Schellekens H, Dinan TG, Cryan JF (2017) The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol 2:747–756.  https://doi.org/10.1016/S2468-1253(17)30147-4
  230. Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK (2014) Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 9:2124–2138.  https://doi.org/10.1016/j.celrep.2014.11.018 CrossRefPubMedPubMedCentralGoogle Scholar
  231. Valdearcos M, Douglass JD, Robblee MM, Dorfman MD, Stifler DR, Bennett ML, Gerritse I, Fasnacht R, Barres BA, Thaler JP, Koliwad SK (2017) Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab 26:185–197.e3.  https://doi.org/10.1016/j.cmet.2017.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  232. van de Giessen E, la Fleur SE, Eggels L, de Bruin K, van den Brink W, Booij J (2013) High fat/carbohydrate ratio but not total energy intake induces lower striatal dopamine D2/3 receptor availability in diet-induced obesity. Int J Obes 37:754–757.  https://doi.org/10.1038/ijo.2012.128 CrossRefGoogle Scholar
  233. Van Loon GR (1983) Plasma dopamine: regulation and significance. Fed Proc 42:3012–3018 PMID: 6413258PubMedGoogle Scholar
  234. Vestri HS, Maianu L, Moellering DR, Garvey WT (2007) Atypical antipsychotic drugs directly impair insulin action in adipocytes: effects on glucose transport, lipogenesis, and antilipolysis. Neuropsychopharmacology 32:765–772.  https://doi.org/10.1038/sj.npp.1301142 CrossRefPubMedGoogle Scholar
  235. Volkow ND, Wise RA (2005) How can drug addiction help us understand obesity? Nat Neurosci 8:555–560.  https://doi.org/10.1038/nn1452 CrossRefPubMedGoogle Scholar
  236. Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, Alexoff D, Ding YS, Wong C, Ma Y, Pradhan K (2008) Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 42:1537–1543.  https://doi.org/10.1016/j.neuroimage.2008.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  237. Voon V, Fernagut PO, Wickens J, Baunez C, Rodriguez M, Pavon N, Juncos JL, Obeso JA, Bezard E (2009) Chronic dopaminergic stimulation in Parkinson's disease: from dyskinesias to impulse control disorders. Lancet Neurol 8:1140–1149.  https://doi.org/10.1016/S1474-4422(09)70287-X CrossRefPubMedGoogle Scholar
  238. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, Netusil N, Fowler JS (2001) Brain dopamine and obesity. Lancet 357:354–357.  https://doi.org/10.1016/S0140-6736(00)03643-6 CrossRefPubMedGoogle Scholar
  239. Wang X, Villar VA, Tiu A, Upadhyay KK, Cuevas S (2018) Dopamine D2 receptor upregulates leptin and IL-6 in adipocytes. J Lipid Res 59:607–614.  https://doi.org/10.1194/jlr.M081000 CrossRefPubMedPubMedCentralGoogle Scholar
  240. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808.  https://doi.org/10.1172/JCI19246 CrossRefPubMedPubMedCentralGoogle Scholar
  241. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL, Ferrante AW Jr (2006) CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 116:115–124.  https://doi.org/10.1172/JCI24335 CrossRefPubMedGoogle Scholar
  242. Wernstedt Asterholm I, Tao C, Morley TS, Wang QA, Delgado-Lopez F, Wang ZV, Scherer PE (2014) Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab 20:103–118.  https://doi.org/10.1016/j.cmet.2014.05.005 CrossRefPubMedGoogle Scholar
  243. Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, Tsui H, Wu P, Davidson MG, Alonso MN, Leong HX, Glassford A, Caimol M, Kenkel JA, Tedder TF, McLaughlin T, Miklos DB, Dosch HM, Engleman EG (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17:610–617.  https://doi.org/10.1038/nm.2353 CrossRefPubMedPubMedCentralGoogle Scholar
  244. Wohleb ES (2016) Neuron-microglia interactions in mental health disorders: "for better, and for worse". Front Immunol 7:544.  https://doi.org/10.3389/fimmu.2016.00544 CrossRefPubMedPubMedCentralGoogle Scholar
  245. Wolf Y, Boura-Halfon S, Cortese N, Haimon Z, Sar Shalom H, Kuperman Y, Kalchenko V, Brandis A, David E, Segal-Hayoun Y, Chappell-Maor L, Yaron A, Jung S (2017) Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat Immunol 18:665–674.  https://doi.org/10.1038/ni.3746 CrossRefPubMedPubMedCentralGoogle Scholar
  246. Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC (2012) The three human monocyte subsets: implications for health and disease. Immunol Res 53:41–57.  https://doi.org/10.1007/s12026-012-8297-3 CrossRefPubMedGoogle Scholar
  247. Wu C, Garamszegi SP, Xie X, Mash DC (2017) Altered dopamine synaptic markers in postmortem brain of obese subjects. Front Hum Neurosci 11:386.  https://doi.org/10.3389/fnhum.2017.00386 CrossRefPubMedPubMedCentralGoogle Scholar
  248. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455.  https://doi.org/10.1038/nature12034 CrossRefPubMedPubMedCentralGoogle Scholar
  249. Xiao L, Yang X, Lin Y, Li S, Jiang J, Qian S, Tang Q, He R, Li X (2016) Large adipocytes function as antigen-presenting cells to activate CD4(+) T cells via upregulating MHCII in obesity. Int J Obes 40:112–120.  https://doi.org/10.1038/ijo.2015.145 CrossRefGoogle Scholar
  250. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830.  https://doi.org/10.1172/JCI19451 CrossRefPubMedPubMedCentralGoogle Scholar
  251. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–288.  https://doi.org/10.1016/j.immuni.2014.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  252. Yamashita AS, Belchior T, Lira FS, Bishop NC, Wessner B, Rosa JC, Festuccia WT (2018) Regulation of metabolic disease-associated inflammation by nutrient sensors. Mediat Inflamm 2018:8261432–8261418.  https://doi.org/10.1155/2018/8261432 CrossRefGoogle Scholar
  253. Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160(1–2):62–73.  https://doi.org/10.1016/j.cell.2014.11.047 CrossRefPubMedGoogle Scholar
  254. Yang H, Youm YH, Vandanmagsar B, Ravussin A, Gimble JM, Greenway F, Stephens JM, Mynatt RL, Dixit VD (2010) Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol 185:1836–1845.  https://doi.org/10.4049/jimmunol.1000021 CrossRefPubMedPubMedCentralGoogle Scholar
  255. Yu C, Wang Z, Han Y, Liu Y, Wang WE, Chen C, Wang H, Jose PA, Zeng C (2014) Dopamine D (4) receptors inhibit proliferation and migration of vascular smooth muscle cells induced by insulin via down-regulation of insulin receptor expression. Cardiovasc Diabetol 13:97.  https://doi.org/10.1186/1475-2840-13-97 CrossRefPubMedPubMedCentralGoogle Scholar
  256. Zawada AM, Rogacev KS, Rotter B, Winter P, Marell RR, Fliser D, Heine GH (2011) SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 118:e50–e61.  https://doi.org/10.1182/blood-2011-01-326827 CrossRefPubMedGoogle Scholar
  257. Zawada AM, Zhang L, Emrich IE, Rogacev KS, Krezdorn N, Rotter B, Fliser D, Devaux Y, Ziegler-Heitbrock L, Heine GH (2017) Reprint of: MicroRNA profiling of human intermediate monocytes. Immunobiology 222:831–840.  https://doi.org/10.1016/j.imbio.2017.05.003 CrossRefPubMedGoogle Scholar
  258. Zeyda M, Farmer D, Todoric J, Aszmann O, Speiser M, Györi G, Zlabinger GJ, Stulnig TM (2007) Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes 31:1420–1428.  https://doi.org/10.1038/sj.ijo.0803632 CrossRefGoogle Scholar
  259. Zhang X, van den Pol AN (2016) Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis. Nat Neurosci 19:1341–1347.  https://doi.org/10.1038/nn.4372 CrossRefPubMedPubMedCentralGoogle Scholar
  260. Zheng C, Yang Q, Cao J, Xie N, Liu K, Shou P, Qian F, Wang Y, Shi Y (2016) Local proliferation initiates macrophage accumulation in adipose tissue during obesity. Cell Death Dis 7:e2167.  https://doi.org/10.1038/cddis.2016.54

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Clinical HaematologyCentro Hospitalar Universitário of PortoPortoPortugal
  2. 2.Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical SciencesUniversity of Porto- UMIB/ICBAS/UPPortoPortugal
  3. 3.Department of Public Health and Forensic Sciences, and Medical Education, Faculty of MedicineUniversity of PortoPortoPortugal
  4. 4.Instituto de Investigação e Inovação em Saúde (I3S)University of PortoPortoPortugal

Personalised recommendations