Skip to main content

Advertisement

Log in

Overexpression of TIPE2, a Negative Regulator of Innate and Adaptive Immunity, Attenuates Cognitive Deficits in APP/PS1 Mice

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Neuroinflammation plays an early and prominent role in the pathology of Alzheimer’s disease (AD). Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) has been identified as a negative regulator of innate and adaptive immunity. However, whether TIPE2 affects cognitive functions in AD-like mouse models remains unknown. In this study, we compared the gene and protein expressions of TIPE2 between the APP/PS1 mice and the age-matched wild type (WT) mice at different stages of development using western blot and RT-qPCR. The hippocampal expression of the TIPE2 mRNA and protein in APP/PS1 mice was higher than that of the WT mice starting from 6 months to 10 months. However, the difference of the TIPE2 expression between the APP/PS1 mice and the WT mice declined in a time-dependent manner. The spatial learning and memory deficit from the 8-month-old APP/PS1 mice was observed in the Y-maze test and fear conditioning task. Interestingly, overexpression of TIPE2 by intra-hippocampal injection of AAV-TIPE2 into APP/PS1 mice resulted in an improvement of learning and memory and reduced expression of inflammatory cytokines, such as TNF-α, IL-6 and IL-1β, and increased expression of anti-inflammatory cytokines, such as IL-10 and Arg-1. Taken together, our findings show that the TIPE2 expression level was negatively correlated with the pathogenesis of Alzheimer’s disease, and overexpression of TIPE2 attenuates cognitive deficits in APP/PS1 mice, suggesting TIPE2 is a potential target for pharmacological intervention and improvement of cognitive deficits.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AD:

Alzheimer’s disease

TIPE2:

Tumor necrosis factor-α-induced protein 8-like 2

Aβ:

β-amyloid

Iba1:

ionized calcium binding adaptor molecule 1

References

  • Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, Rosenkrantz LL, Imboywa S, Lee M, Von Korff A, Alzheimer Disease Neuroimaging I, Morris MC, Evans DA, Johnson K, Sperling RA, Schneider JA, Bennett DA, De Jager PL (2013) CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16:848–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP (2006) Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 3:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crehan H, Hardy J, Pocock J (2013) Blockage of CR1 prevents activation of rodent microglia. Neurobiol Dis 54:139–149

    Article  CAS  PubMed  Google Scholar 

  • Dai JX, Han HL, Tian M, Cao J, Xiu JB, Song NN, Huang Y, Xu TL, Ding YQ, Xu L (2008) Enhanced contextual fear memory in central serotonin-deficient mice. Proc Natl Acad Sci U S A 105:11981–11986

    Article  PubMed  PubMed Central  Google Scholar 

  • Freire D, Reyes RE, Baghram A, Davies DL, Asatryan L (2018) P2X7 receptor antagonist A804598 inhibits inflammation in brain and liver in C57BL/6J mice exposed to chronic ethanol and high fat diet. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology

  • Graeber MB (2010) Changing face of microglia. Science 330:783–788

    Article  CAS  PubMed  Google Scholar 

  • Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE (2013) Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerreiro R et al (2013) TREM2 variants in Alzheimer's disease. N Engl J Med 368:117–127

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT et al (2015) Neuroinflammation in Alzheimer's disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML, Xu G, Margevicius D, Karlo JC, Sousa GL, Cotleur AC, Butovsky O, Bekris L, Staugaitis SM, Leverenz JB, Pimplikar SW, Landreth GE, Howell GR, Ransohoff RM, Lamb BT (2015) TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J Exp Med 212:287–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur C, Rathnasamy G, Ling EA (2017) Biology of microglia in the developing brain. J Neuropathol Exp Neurol 76:736–753

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  • Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Primers 1:15056

    Article  PubMed  Google Scholar 

  • Navarro V, Sanchez-Mejias E, Jimenez S, Munoz-Castro C, Sanchez-Varo R, Davila JC, Vizuete M, Gutierrez A, Vitorica J (2018) Microglia in Alzheimer's Disease: activated, dysfunctional or degenerative. Front Aging Neurosci 10:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ossenkoppele R et al (2015) The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain 138:2732–2749

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J, Wetzel I, Marriott I, Dreau D, D'Avanzo C, Kim DY, Tanzi RE, Cho H (2018) A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer's disease. Nat Neurosci 21:941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimenova AA, Raj T, Goate AM (2018) Untangling genetic risk for Alzheimer's Disease. Biol Psychiatry 83:300–310

    Article  CAS  PubMed  Google Scholar 

  • Pozueta J, Lefort R, Shelanski ML (2013) Synaptic changes in Alzheimer's disease and its models. Neuroscience 251:51–65

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Holtzman DM (2018) Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 18:759–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoham S, Linial M, Weinstock M (2018) Age-induced spatial memory deficits in rats are correlated with specific brain region alterations in microglial morphology and gene expression. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology

  • Sierra-Filardi EP-KA, Blanco FJ et al (2011) Activin a skews macrophage polarization by promoting a proinfl ammatory phenotype and inhibiting the acquisition of anti-infl ammatory macrophage markers. Blood 117:5092–5101

    Article  CAS  PubMed  Google Scholar 

  • Spangenberg EE, Green KN (2017) Inflammation in Alzheimer's disease: lessons learned from microglia-depletion models. Brain Behav Immun 61:1–11

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Gong S, Carmody RJ, Hilliard A, Li L, Sun J, Kong L, Xu L, Hilliard B, Hu S, Shen H, Yang X, Chen YH (2008) TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell 133:415–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suryavanshi PS, Ugale RR, Yilmazer-Hanke D, Stairs DJ, Dravid SM (2014) GluN2C/GluN2D subunit-selective NMDA receptor potentiator CIQ reverses MK-801-induced impairment in prepulse inhibition and working memory in Y-maze test in mice. Br J Pharmacol 171:799–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Eldik LJ, Carrillo MC, Cole PE, Feuerbach D, Greenberg BD, Hendrix JA, Kennedy M, Kozauer N, Margolin RA, Molinuevo JL, Mueller R, Ransohoff RM, Wilcock DM, Bain L, Bales K (2016) The roles of inflammation and immune mechanisms in Alzheimer's disease. Alzheimers Dement 2:99–109

    Google Scholar 

  • Zhang F, Jiang L (2015) Neuroinflammation in Alzheime’s disease. Neuropsychiatr Dis Treat:243

  • Zhang W, Rosenkranz JA (2013) Repeated restraint stress enhances cue-elicited conditioned freezing and impairs acquisition of extinction in an age-dependent manner. Behav Brain Res 248:12–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Hao C, Lou Y, Xi W, Wang X, Wang Y, Qu Z, Guo C, Chen Y, Zhang Y, Liu S (2010) Tissue-specific expression of TIPE2 provides insights into its function. Mol Immunol 47:2435–2442

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wei X, Liu L, Liu S, Wang Z, Zhang B, Fan B, Yang F, Huang S, Jiang F, Chen YH, Yi F (2012) TIPE2, a novel regulator of immunity, protects against experimental stroke. J Biol Chem 287:32546–32555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhu T, Liu W, Qu X, Chen Y, Ren P, Wang Z, Wei X, Zhang Y, Yi F (2015) TIPE2 acts as a negative regulator linking NOD2 and inflammatory responses in myocardial ischemia/reperfusion injury. J Mol Med 93:1033–1043

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the research fundings granted to Fang ZHANG from the Natural Science Foundation of Shandong Province of China, No. ZR2016 HM 46; Post doctoral application foundation of Qingdao Municipal Bureau of Social Sciences, No. 2016062; Qingdao Science and Technology Bureau, No. 18-6-1-75-nsh; Clinical medicine +X Project of Qingdao University Medical Department, No. 2017 M08; and Innovation and Entrepreneurship Training Program of undergraduate student in Qingdao University, No. 201711065152.

Author information

Authors and Affiliations

Authors

Contributions

Fang Zhang, Wenjian Shao, Zhihong Yang, Lei Wang and Chuanxia Ju contributed to the experimental design. Yongzhen Miao, Zihan Xu and Ruoyu Zhang contributed to the experimental process. Yongzhen Miao wrote this article. Naidong Wang provided fund support for our supplementary experiment and revised our manuscript.

Corresponding author

Correspondence to Fang Zhang.

Ethics declarations

Ethics Approval

The experiments were approved by the Qingdao University Experimental Animal Care and Use Committee.

Competing Interests

The authors declare that they have no competing interests.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Wang, N., Shao, W. et al. Overexpression of TIPE2, a Negative Regulator of Innate and Adaptive Immunity, Attenuates Cognitive Deficits in APP/PS1 Mice. J Neuroimmune Pharmacol 14, 519–529 (2019). https://doi.org/10.1007/s11481-019-09861-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-019-09861-2

Keywords

Navigation