Skip to main content

Advertisement

Log in

Immunomodulatory Properties of Bone Marrow Mesenchymal Stem Cells from Patients with Amyotrophic Lateral Sclerosis and Healthy Donors

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Pathogenesis of amyotrophic lateral sclerosis (ALS) involves several mechanisms resulting in a shift from a neuroprotective to a neurotoxic immune reaction. A promising tool for ALS treatment is represented by mesenchymal stem cells (MSCs), which possess both regenerative potential and immunomodulatory properties. In this study, we aimed to compare the immunomodulatory properties of MSCs isolated from the bone marrow of patients suffering from ALS and healthy donors. Moreover, the influence of proinflammatory cytokines on the immunoregulatory functions of MSCs was also evaluated. We found that MSCs from ALS patients and healthy donors comparably affected mitogen-stimulated peripheral blood mononuclear cells and reduced the percentage of T helper (Th)1, Th17 and CD8+CD25+ lymphocytes. These MSCs also equally increased the percentage of Th2 and CD4+FOXP3+ T lymphocytes. On the other hand, MSCs from ALS patients decreased more strongly the production of tumour necrosis factor-α than MSCs from healthy donors, but this difference was abrogated in the case of MSCs stimulated with cytokines. Significant differences between cytokine-treated MSCs from ALS patients and healthy donors were detected in the effects on the percentage of CD8+CD25+ and CD4+FOXP3+ T lymphocytes. In general, treatment of MSCs with cytokines results in a potentiation of their effects, but in the case of MSCs from ALS patients, it causes stagnation or even restriction of some of their immunomodulatory properties. We conclude that MSCs from ALS patients exert comparable immunomodulatory effects to MSCs from healthy donors, but respond differently to stimulation with proinflammatory cytokines.

Treatment of mesenchymal stem cells (MSCs) with cytokines results in a potentiation of their effects, but in the case of MSCs from amyotrophic lateral sclerosis (ALS) patients, it causes stagnation (an equal reduction of the percentage of CD8+CD25+ T lymphocytes) or even restriction (no increase of proportion of CD4+FOXP3+ T lymphocytes) of some of their immunomodulatory properties. It means that MSCs from ALS patients exert comparable immunomodulatory effects to MSCs from healthy donors, but respond differently to stimulation with proinflammatory cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Characterization of unstimulated MSCs (ALS and HC) and MSCs treated with proinflammatory cytokines (ALSc and HCc).
Fig. 2: Effect of MSCs on IL-10 and TNF-α production by PBMCs stimulated with LPS.
Fig. 3: Effect of MSCs on the percentage of activated CD4+ and CD8+ T lymphocytes.
Fig. 4: Influence of MSCs on the percentage of Th1 lymphocytes and production or expression of IFN-γ.
Fig. 5: Effect of MSCs on the percentage of Th2 lymphocytes and production or expression of IL-10.
Fig. 6: Effect of MSCs on the percentage of CD4+FOXP3+ T cells and Th17 lymphocytes and expression of IL-17 gene.

Similar content being viewed by others

Abbreviations

ALS:

amyotrophic lateral sclerosis

APC:

allophycocyanin

BM:

bone marrow

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

dimethyl sulfoxide

ELISA:

enzyme-linked immunosorbent assay

FITC:

fluorescein isothiocyanate

HC:

healthy control

IFN:

interferon

IL:

interleukin

LPS:

lipopolysaccharide

mAb:

monoclonal antibody

MS:

multiple sclerosis

MSCs:

mesenchymal stem cells

PBMCs:

peripheral blood mononuclear cells

PBS:

phosphate-buffered saline

PD-L1:

programmed death-ligand 1

PE:

phycoerythrin

PHA:

phytohemagglutinin

RA:

rheumatoid arthritis

Th:

T helper

TNF:

tumour necrosis factor

Treg:

T regulatory

References

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole study group. N Engl J Med 330:585–591

    Article  CAS  PubMed  Google Scholar 

  • Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, Lotfi J, Khorramnia S, Motamed MR, Togha M, Harirchian MH, Moghadam NB, Alikhani K, Yadegari S, Jafarian S, Gheini MR (2012) Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther 7:407–414

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  CAS  PubMed  Google Scholar 

  • Chiò A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White LA (2013) Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41:118–130

    Article  PubMed  Google Scholar 

  • Cho GW, Noh MY, Kim HY, Koh SH, Kim KS, Kim SH (2010) Bone marrow-derived stromal cells from amyotrophic lateral sclerosis patients have diminished stem cell capacity. Stem Cells Dev 19:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira GL, de Lima KW, Colombini AM, Pinheiro DG, Panepucci RA, Palma PV, Brum DG, Covas DT, Simões BP, de Oliveira MC, Donadi EA, Malmegrim KC (2015) Bone marrow mesenchymal stromal cells isolated from multiple sclerosis patients have distinct gene expression profile and decreased suppressive function compared with healthy counterparts. Cell Transplant 24:151–165

    Article  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Dj P, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • English K, Barry FP, Field-Corbett CP, Mahon BP (2007) IFN-γ and TNF-α differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett 110:91–100

    Article  CAS  PubMed  Google Scholar 

  • Ferrero I, Mazzini L, Rustichelli D, Gunetti M, Mareschi K, Testa L, Nasuelli N, Oggioni GD, Fagioli F (2008) Bone marrow mesenchymal stem cells from healthy donors and sporadic amyotrophic lateral sclerosis patients. Cell Transplant 17:255–266

    Article  PubMed  Google Scholar 

  • Ghannam S, Pène J, Moquet-Torcy G, Jorgensen C, Yssel H (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185:302–312

    Article  CAS  PubMed  Google Scholar 

  • Graves MC, Fiala M, Dinglasan LA, Liu NQ, Sayre J, Chiappelli F, van Kooten C, Vinters HV (2004) Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Other Motor Neuron Disord 5:213–219

    Article  CAS  PubMed  Google Scholar 

  • Holan V, Hermankova B, Bohacova P, Kossl J, Chudickova M, Hajkova M, Krulova M, Zajicova A, Javorkova E (2016) Distinct immunoregulatory mechanisms in mesenchymal stem cells: role of the cytokine environment. Stem Cell Rev 12:654–663

    Article  CAS  Google Scholar 

  • Hooten KG, Beers DR, Zhao W, Appel SH (2015) Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics 12:364–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javorkova E, Trosan P, Zajicova A, Krulova M, Hajkova M, Holan V (2014) Modulation of the early inflammatory microenvironment in the alkali-burned eye by systemically administered interferon-γ-treated mesenchymal stromal cells. Stem Cells Dev 23:2490–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW, Petrou P, Ben-Hur T, Abramsky O, Slavin S (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67:1187–1194

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37:1445–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh SH, Baik W, Noh MY, Cho GW, Kim HY, Kim KS, Kim SH (2012) The functional deficiency of bone marrow mesenchymal stromal cells in ALS patients is proportional to disease progression rate. Exp Neurol 233:472–480

    Article  CAS  PubMed  Google Scholar 

  • Le Blanc K, Rasmusson I, Götherström C, Seidel C, Sundberg B, Sundin M, Rosendahl K, Tammik C, Ringdén O (2004) Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol 60:307–315

    Article  PubMed  Google Scholar 

  • Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzón IM, Nepomnaschy I, Costa H, Cañones C, Raiden S, Vermeulen M, Geffner JR (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5:e9252. https://doi.org/10.1371/journal.pone.0009252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229:176–185

    Article  CAS  PubMed  Google Scholar 

  • Schuurman HJ, van Wichen D, de Weger RA (1989) Expression of activation antigens on thymocytes in the 'common thymocyte' stage of differentiation. Thymus 14:43–53

    CAS  PubMed  Google Scholar 

  • Skalska U, Kontny E (2016) Adipose-derived mesenchymal stem cells from infrapatellar fat pad of patients with rheumatoid arthritis and osteoarthritis have comparable immunomodulatory properties. Autoimmunity 49:124–131

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Deng W, Geng L, Zhang L, Liu R, Chen W, Yao G, Zhang H, Feng X, Gao X, Sun L (2015) Mesenchymal stem cells from patients with rheumatoid arthritis display impaired function in inhibiting Th17 cells. J Immunol Res 2015:1–13. https://doi.org/10.1155/2015/284215

    Article  CAS  Google Scholar 

  • Svobodova E, Krulova M, Zajicova A, Pokorna K, Prochazkova J, Trosan P, Holan V (2012) The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population. Stem Cells Dev 21:901–910

    Article  CAS  PubMed  Google Scholar 

  • Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D, Ferrero I, Mazzini L, Madon E, Fagioli F (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 31:395–405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Charles University grant (SVV 244-260435), by the Grant Agency of Charles University (projects number 80815 and 1516218) and by the Czech Ministry of Education, Youth and Sports (NPUI: LO1309 and LO1508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliska Javorkova.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javorkova, E., Matejckova, N., Zajicova, A. et al. Immunomodulatory Properties of Bone Marrow Mesenchymal Stem Cells from Patients with Amyotrophic Lateral Sclerosis and Healthy Donors. J Neuroimmune Pharmacol 14, 215–225 (2019). https://doi.org/10.1007/s11481-018-9812-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-018-9812-7

Keywords

Navigation