Skip to main content

Advertisement

Log in

Methamphetamine Induces Apoptosis of Microglia via the Intrinsic Mitochondrial-Dependent Pathway

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Methamphetamine (METH) is a drug of abuse, the acute and chronic use of which induces neurotoxic responses in the human brain, ultimately leading to neurocognitive disorders. Our goals were to understand the impact of METH on microglial mitochondrial respiration and to determine whether METH induces the activation of the mitochondrial-dependent intrinsic apoptosis pathway in microglia. We assessed the expression of pro- apoptosis genes using qPCR of RNA extracted from a human microglial cell line (HTHU). We examined the apoptosis-inducing effects of METH on microglial cells using digital holographic microscopy (DHM) to quantify real-time apoptotic volume decrease (AVD) in microglia in a noninvasive manner. METH treatment significantly increased AVD, activated Caspase 3/7, increased the gene expression levels of the pro- apoptosis proteins, APAF-1 and BAX, and decreased mitochondrial DNA content. Using immunofluorescence analysis, we found that METH increased the expression of the mitochondrial proteins cytochrome c and MCL-1, supporting the activation of mitochondrion-dependent (intrinsic) apoptosis pathway. Cellular bio-energetic flux analysis by Agilent Seahorse XF Analyzer revealed that METH treatment increased both oxidative and glycolytic respiration after 3 h, which was sustained for at least 24 h. Several events, such as oxidative stress, neuro-inflammatory responses, and mitochondrial dysfunction, may converge to mediate METH-induced apoptosis of microglia that may contribute to neurotoxicity of the CNS. Our study has important implications for therapeutic strategies aimed at preserving mitochondrial function in METH abusing patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berman SM, Kuczenski R, McCracken JT, London ED (2009) Potential adverse effects of amphetamine treatment on brain and behavior: a review. Mol Psychiatry 14(2):123–142

    Article  PubMed  CAS  Google Scholar 

  • Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown JM, Quinton MS, Yamamoto BK (2005) Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. J Neurochem 95:429–436

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Krasnova IN (2007) Interactions of HIV and methamphetamine: cellular and molecular mechanisms of toxicity potentiation. Neurotox Res 12(3):181–204

  • Cadet JL, Krasnova IN (2009) Molecular bases of methamphetamine-induced neurodegeneration. Int Rev Neurobiol 88:101–119

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Jayanthi S, Deng X (2003) Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. FASEB J 17(13):1775–1788

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Jayanthi S, Deng X (2005) Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review. Neurotox Res 8(3-4):199–206

  • Cao L, Walker MP, Vaidya NK, Fu M, Kumar S, Kumar A (2015) Cocaine-mediated autophagy in astrocytes involves sigma 1 receptor, PI3K, mTOR, Atg5/7, Beclin-1 and induces type II programed cell death. Mol Neurobiol 53:4417–4413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castino R, Lazzeri G, Lenzi P, Bellio N, Follo C, Ferrucci M et al (2008) Suppression of autophagy precipitates neuronal cell death following low doses of methamphetamine. J Neurochem 106:1426–1439

    Article  PubMed  CAS  Google Scholar 

  • Coelho-Santos V, Gonçalves J, Fontes-Ribeiro C, Silva AP (2012) Prevention of methamphetamine-induced microglial cell death by TNF-α and IL-6 through activation of the JAK-STAT pathway. J Neuroinflammation 6(9):103 https://doi.org/10.1186/1742-2094-9-103

  • Cubells JF, Rayport S, Rajendran G, Sulzer D (1994 Apr) Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci 14(4):2260–2271

    Article  PubMed  CAS  Google Scholar 

  • Davidson C, Gow AJ, Lee TH, Ellinwood EH (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Rev 36(1):1–22

    Article  PubMed  CAS  Google Scholar 

  • Dean AC, Groman SM, Morales AM, London ED (2013) An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology 38(2):259–274

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Ladenheim B, Jayanthi S, Cadet JL (2007) Methamphetamine administration causes death of dopaminergic neurons in the mouse olfactory bulb. Biol Psychiatry 61(11):1235–1243

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Cai NS, McCoy MT, Chen W, Trush MA, Cadet JL (2002) Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology 42(6):837–845

    Article  PubMed  CAS  Google Scholar 

  • Fernandes NC, Sriram U, Gofman L, Cenna JM, Ramirez SH, Potula R (2016) Methamphetamine alters microglial immune function through P2X7R signaling. J Neuroinflammation 13:91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrick DA, Neilson A, Beeson C (2008) Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov Today 13(5–6):268–274

    Article  PubMed  CAS  Google Scholar 

  • Friend DM, Keefe KA (2013) Glial reactivity in resistance to methamphetamine-induced neurotoxicity. J Neurochem 125:566–574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Mesa Y, Jay TR, Checkley MA, Luttge B, Dobrowolski C, Valadkhan S, Landreth GE, Karn J, Alvarez-Carbonell D (2017) Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. J Neuro-Oncol 23(1):47–66

    CAS  Google Scholar 

  • Gonçalves J, Baptista S, Martins T, Milhazes N, Borges F, Ribeiro CF, Malva JO, Silva AP (2010) Methamphetamine-induced neuroinflammation and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. Eur J Neurosci 31:315–326

    Article  PubMed  Google Scholar 

  • Jayanthi S, Deng X, Bordelon M, McCoy MT, Cadet JL (2001) Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex. FASEB J 15(10):1745–1752

    Article  PubMed  CAS  Google Scholar 

  • Jayanthi S, Deng X, Noailles PA, Ladenheim B, Cadet JL (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J 18(2):238–251

    Article  PubMed  CAS  Google Scholar 

  • Khmaladze A, Kim MK, Lo CM (2008) Phase imaging of cells by simultaneous dual-wavelength reflection digital holography. Opt Express 16:10900–10911

    Article  PubMed  Google Scholar 

  • Khmaladze A, Matz RL, Epstein T, Jasensky J, Banaszak Holl MM, Chen Z (2012) Cell volume changesduring apoptosis monitored in real time using digital holographic microscopy. J Struct Biol 178:270–278

    Article  PubMed  Google Scholar 

  • Lang F, Shumilina E, Ritter M, Gulbins E, Vereninov A, Huber SM (2006) Ion channels and cell volume in regulation of cell proliferation and apoptotic cell death. Contrib Nephrol 152:142–160

    Article  PubMed  CAS  Google Scholar 

  • LaVoie MJ, Card JP, Hastings TG (2004) Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp Neurol 187:47–57

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Loftis JM, Choi D, Hoffman W, Huckans MS (2011) Methamphetamine causes persistent immune dysregulation: a cross-species, translational report. Neurotox Res 20:59–68

    Article  PubMed  CAS  Google Scholar 

  • Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7(4):354–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma J, Wan J, Meng J, Banerjee S, Ramakrishnan S, Roy S (2014) Methamphetamine induces autophagy as a pro-survival response against apoptotic endothelial cell death through the Kappa opioid receptor. Cell Death Dis 5:e1099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maltese WA, Overmeyer JH (2015) Non-apoptotic cell death associated with perturbations of macropinocytosis. Front Physiol 6:38. https://doi.org/10.3389/fphys.2015.00038

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall BD, Werb D (2010) Health outcomes associated with methamphetamine use among young people: a systematic review. Addiction 105(6):991–1002

    Article  PubMed  Google Scholar 

  • Marshall JF, O'Dell SJ (2012) Methamphetamine influences on brain and behavior: unsafe at any speed? Trends Neurosci 35(9):536–545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsumoto RR, Shaikh J, Wilson LL, Vedam S, Coop A (2008) Attenuation of methamphetamine induced effects through the antagonism of sigma (sigma) receptors: evidence from in vivo and in vitro studies. Eur Neuropsychopharmacol 18:871–881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCann UD, Kuwabara H, Kumar A, Palermo M, Abbey R, Brasic J, Ye W, Alexander M, Dannals RF, Wong DF, Ricaurte GA (2008) Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Synapse 62:91–100

    Article  PubMed  CAS  Google Scholar 

  • Núñez R, Sancho-Martínez SM, Novoa JM, López-Hernández FJ (2010) Apoptotic volume decrease as a geometric determinant for cell dismantling into apoptotic bodies. Cell Death Differ 17(11):1665–1671

    Article  PubMed  Google Scholar 

  • Nguyen EC, McCracken KA, Liu Y, Pouw B, Matsumoto RR (2005) Involvement of sigma (sigma) receptors in the acute actions of methamphetamine: receptor binding and behavioral studies. Neuropharmacology 49:638–645

    Article  PubMed  CAS  Google Scholar 

  • O'Callaghan JP, Sriram K, Miller DB (2008) Defining ‘neuroinflammation’: lessons from MPTP- and methamphetamine-induced neurotoxicity. Ann N Y Acad Sci 1139(10):318–330

    Article  PubMed  CAS  Google Scholar 

  • Pasantes-Morales H, Tuz K (2006) Volume changes in neurons: hyperexcitability and neuronal death. Contrib Nephrol 152:221–240

    Article  PubMed  CAS  Google Scholar 

  • Pasquali L, Lazzeri G, Isidoro C, Ruggieri S, Paparelli A, Fornai F (2008 Oct) Role of autophagy during methamphetamine neurotoxicity. Ann N Y Acad Sci 1139:191–196

    Article  PubMed  CAS  Google Scholar 

  • Rau TF, Kothiwal AS, Rova AR, Brooks DM, Poulsen DJ (2012) Treatment with low-dose methamphetamine improves behavioral and cognitive function after severe traumatic brain injury. J Trauma Acute Care Surg 73(2 Suppl 1):S165–S172

    Article  PubMed  CAS  Google Scholar 

  • Rau TF, Kothiwal AS, Zhang L, Ulatowski S, Jacobson S, Brooks DM, Cardozo-Pelaez F, Chopp M, Poulsen DJ (2011) Low dose methamphetamine mediates neuroprotection through a PI3K-AKT pathway. Neuropharmacology 61(4):677–686

    Article  PubMed  CAS  Google Scholar 

  • Roohbakhsh A, Shirani K, Karimi G (2016) Methamphetamine-induced toxicity: the role of autophagy? Chem Biol Interact 260:163–167

    Article  PubMed  CAS  Google Scholar 

  • Rusyniak DE (2011) Neurologic manifestations of chronic methamphetamine abuse. Neurol Clin 29(3):641–655

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, Iwata Y, Tsuchiya KJ, Suda S, Suzuki K, Kawai M, Takebayashi K, Yamamoto S, Matsuzaki H, Ueki T, Mori N, Gold MS, Cadet JL (2008) Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci 28:5756–5761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen K, Zhang Y, Lv X, Chen X, Zhou R, Nguyen LK, Wu X, Yao H (2016) Molecular mechanisms involving sigma-1 receptor in cell apoptosis of bv-2 microglial cells induced by methamphetamine. CNS Neurol Disord Drug Targets 15:857–865

    Article  PubMed  CAS  Google Scholar 

  • Smith KJ, Butler TR, Prendergast MA (2010) Inhibition of sigma-1 receptor reduces N-methyl-D-aspartate induced neuronal injury in methamphetamine-exposed and -naive hippocampi. Neurosci Lett 481:144–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiriet N, Jayanthi S, McCoy M, Ladenheim B, Cadet JL (2001) Methamphetamine increases expression of the apoptotic c-myc and L-myc genes in the mouse brain. Brain Res Mol Brain Res 90(2):202–204

    Article  PubMed  CAS  Google Scholar 

  • Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, Lee JY, Toga AW, Ling W, London ED (2004) Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 24:6028–6036

    Article  PubMed  CAS  Google Scholar 

  • Tong J, Fitzmaurice P, Furukawa Y, Schmunk GA, Wickham DJ, Ang LC, Sherwin A, McCluskey T, Boileau I, Kish SJ (2014) Is brain gliosis a characteristic of chronic methamphetamine use in the human? Neurobiol Dis 67:107–118

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death Differ 12(Suppl 2):1528–1534

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Shumay E, Telang F, Thanos PK, Alexoff D (2010) Distribution and pharmacokinetics of methamphetamine in the human body: clinical implications. PLoS One 5(12):e15269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Silva JP, Gustafsson CM, Rustin P, Larsson NG (2001) Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc Natl Acad Sci U S A 98(7):4038–4043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Qian W, Liu J, Zhao J, Yu P, Jiang L, Jing Z, Gao R, Xiao H (2014) Effect of methamphetamine on the microglial damage: role of potassium channel Kv1.3. PLoS One 9(2):e88642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu CW, Ping YH, Yen JC, Chang CY, Wang SF, Yeh CL, Chi CW, Lee HC (2007) Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis. Toxicol Appl Pharmacol 220:243–251

    Article  PubMed  CAS  Google Scholar 

  • Xu E, Liu J, Liu H, Wang X, Xiong H (2017) Role of microglia in methamphetamine-induced neurotoxicity. Int J Physiol Pathophysiol Pharmacol 9(3):84–100

    PubMed  PubMed Central  Google Scholar 

  • Yamamoto BK, Moszczynska A, Gudelsky GA (2010) Amphetamine toxicities: classical and emerging mechanisms. Ann N Y Acad Sci 1187:101–121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu S, Zhu L, Shen Q, Bai X, Di X (2015) Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav Neurol volume 2015, Article ID 103969, 11 pages, 2015. https://doi.org/10.1155/2015/103969

  • Zhang Y, Lv X, Bai Y, Zhu X, Wu X, Chao J, Duan M, Buch S, Chen L, Yao H (2015) Involvement of sigma-1 receptor in astrocyte activation induced by methamphetamine via up-regulation of its own expression. J Neuroinflammation 12:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge grant support from the Dr. Louis Sklarow Memorial Trust (SDM) and the Troup Fund of the Kaleida Health Foundations (SAS). The authors are grateful to Dr. Jonathan Karn, Chairman and Reinberger Professor of Molecular Biology, and Director of the CASE Center for AIDS Research, Case Western Reserve University, Cleveland, OH for the generous donation of the HTHU cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya D. Mahajan.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharikova, A.V., Quaye, E., Park, J.Y. et al. Methamphetamine Induces Apoptosis of Microglia via the Intrinsic Mitochondrial-Dependent Pathway. J Neuroimmune Pharmacol 13, 396–411 (2018). https://doi.org/10.1007/s11481-018-9787-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-018-9787-4

Keywords

Navigation