Skip to main content
Log in

Vitamin D Treatment Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in an Animal Model of Parkinson’s Disease, Shifting M1 to M2 Microglia Responses

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Microglia-mediated neuroinflammation has been described as a common hallmark of Parkinson’s disease (PD) and is believed to further exacerbate the progressive degeneration of dopaminergic neurons. Current therapies are unable to prevent the disease progression. A significant association has been demonstrated between PD and low levels of vitamin D in patients serum, and vitamin D supplement appears to have a beneficial clinical effect. Herein, we investigated whether vitamin D administered orally in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced preclinical animal model of PD protects against glia-mediated inflammation and nigrostriatal neurodegeneration. Vitamin D significantly attenuated the MPTP-induced loss of tyrosine hydrlase (TH)-positive neuronal cells, microglial cell activation (Iba1-immunoreactive), inducible nitric oxide synthase (iNOS) and TLR-4 expression, typical hallmarks of the pro-inflammatory (M1) activation of microglia. Additionally, Vitamin D was able to decrease pro-inflammatory cytokines mRNA expression in distinct brain areas of the MPTP mouse. Importantly, we also assessed the anti-inflammatory property of vitamin D in the MPTP mouse, in which it upregulated the anti-inflammatory cytokines (IL-10, IL-4 and TGF-β) mRNA expression as well as increasing the expression of CD163, CD206 and CD204, typical hallmarks of alternative activation of microglia for anti-inflammatory signalling (M2). Collectively, these results demonstrate that vitamin D exhibits substantial neuroprotective effects in this PD animal model, by attenuating pro-inflammatory and up-regulating anti-inflammatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barcia C, Ros CM, Annese V, Gómez A, Ros-Bernal F, Aguado-Yera D, Martínez-Pagán ME, de Pablos V, Fernandez-Villalba E, Herrero MT (2011) IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis 2:e142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739

    Article  CAS  PubMed  Google Scholar 

  • Blandini F (2013) Neural and immune mechanisms in the pathogenesis of Parkinson’s disease. J NeuroImmune Pharmacol 8:189–201

    Article  PubMed  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  PubMed  Google Scholar 

  • Boontanrart M, Hall SD, Spanier JA, Hayes CE, Olson JK (2016) Vitamin D3 alters microglia immune activation by an IL-10 dependent SOCS3 mechanism. J Neuroimmunol 292:126–136

    Article  CAS  PubMed  Google Scholar 

  • Bosurgi L, Manfredi AA, Rovere-Querini P (2011) Macrophages in injured skeletal muscle: a perpetuum mobile causing and limiting fibrosis, prompting or restricting resolution and regeneration. Front Immunol 2:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chen H, O’Reilly EJ, Schwarzschild MA, Ascherio A (2008) Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am J Epidemiol 167:90–95

    Article  PubMed  Google Scholar 

  • De Lella Ezcurra AL, Chertoff M, Ferrari C, Graciarena M, Pitossi F (2010) Chronic expression of low levels of tumor necrosis factor-alpha in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation. Neurobiol Dis 37:630–640

    Article  CAS  PubMed  Google Scholar 

  • de Sampaio e Spohr TC, Martinez R, da Silva EF, Neto VM, Gomes FC (2002) Neuro-glia interaction effects on GFAP gene: a novel role for transforming growth factorbeta1. Eur J Neurosci 16:2059–2069

    Article  PubMed  Google Scholar 

  • Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG (2012) IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol 189:3669–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genin M, Clement F, Fattaccioli A, Raes M, Michiels C (2015) M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15:577

    Article  PubMed  PubMed Central  Google Scholar 

  • González H, Elgueta D, Montoya A, Pacheco R (2014) Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 274:1–13

    Article  PubMed  Google Scholar 

  • Gutierrez J, Raju S, Riley JP, Boulis NM (2014) Introduction to neuropathic pain syndromes. Neurosurg Clin N Am 25:639-662

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  CAS  PubMed  Google Scholar 

  • Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106:518–526

    Article  CAS  PubMed  Google Scholar 

  • Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32:1208–1215

    Article  CAS  PubMed  Google Scholar 

  • Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2:141–151

    Article  CAS  PubMed  Google Scholar 

  • Jeong JH, Lee YR, Park HG, Lee WL (2015) The effects of either resveratrol or exercise on macrophage infiltration and switching from M1 to M2 in high fat diet mice. J Exerc Nutrition Biochem 19:65–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Joh TH (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 38:333–347

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Ryu SY, Yun I, Kim WJ, Lee KS, Park JW, Kim YI (2006) 1alpha,25-dihydroxyvitamin D(3) protects dopaminergic neurons in rodent models of Parkinson’s disease through inhibition of microglial activation. J Clin Neurol 4:252–257

    Article  Google Scholar 

  • Kim TH, Lee B, Kwon E, Choi SJ, Lee YH, Song GG, Sohn J, Ji JD (2013) Regulation of TREM-1 expression by 1,25-dihydroxyvitamin D3 in human monocytes/macrophages. Immunol Lett 154:80–85

    Article  CAS  PubMed  Google Scholar 

  • Kou PM, Babensee JE (2011) Macrophage and dendritic cell phenotypic diversity in the context of biomaterials. J Biomed Mater Res A 96:239–260

    Article  PubMed  Google Scholar 

  • Krieglstein K, Suter-Crazzolara C, Fischer WH, Unsicker K (1995) TGF-β superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J 14:736–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leal MC, Casabona JC, Puntel M, Pitossi FJ (2013) Interleukin-1β and tumor necrosis factor-α: reliable targets for protective therapies in Parkinson’s disease? Front Cell Neurosci 7:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373:2055–2066

    Article  CAS  PubMed  Google Scholar 

  • Letiembre M, Hao W, Liu Y, Walter S, Mihaljevic I, Rivest S, Hartmann T, Fassbender K (2007) Innate immune receptor expression in normal brain aging. Neuroscience 146:248–254

    Article  CAS  PubMed  Google Scholar 

  • Lofrumento DD, Saponaro C, Cianciulli A, De Nuccio F, Mitolo V, Nicolardi G, Panaro MA (2011) MPTP-induced neuroinflammation increases the expression of proinflammatory cytokines and their receptors in mouse brain. Neuroimmunomodulation 18:79–88

    Article  CAS  PubMed  Google Scholar 

  • Lofrumento DD, Nicolardi G, Cianciulli A, De Nuccio F, La Pesa V, Carofiglio V, Dragone T, Calvello R, Panaro MA (2014) Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson’s-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun 20:249–260

    Article  PubMed  Google Scholar 

  • McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Meredith GE, Rademacher DJ (2011) MPTP mouse models of Parkinson’s disease: an update. J Park Dis 1:19–33

    CAS  Google Scholar 

  • Moore KW, deWaal MR, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683-765

  • Mora JR, Iwata M, von Andrian UH (2008) Vitamin effects on the immune system: vitamins a and D take Centre stage. Nat Rev Immunol 8:685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6:261–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mstriatumherson CA, Merrick BA, Harry GJ (2014) In vivo molecular markers for pro-inflammatory cytokine M1 stage and resident microglia in trimethyltin-induced hippocampal injury. Neurotox Res 25:45–56

    Article  Google Scholar 

  • Norman AW (2012) The history of the discovery of vitamin D and its daughter steroid hormone. Ann Nutr Metab 61:199–206

    Article  CAS  PubMed  Google Scholar 

  • Olanow CW, Schapira AH (2013) Therapeutic prospects for Parkinson disease. Ann Neurol 74:337–347

    Article  CAS  PubMed  Google Scholar 

  • Panaro MA, Lofrumento DD, Saponaro C, De Nuccio F, Cianciulli A, Mitolo V, Nicolardi G (2008) Expression of TLR4 and CD14 in the central nervous system (CNS) in a MPTP mouse model of Parkinson’s-like disease. Immunopharmacol Immunotoxicol 30:729–740

    Article  CAS  PubMed  Google Scholar 

  • Pikhovych A, Stolberg NP, Jessica Flitsch L, Walter HL, Graf R, Fink GR, Schroeter M, Rueger MA (2016) Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain. Stem Cells Int 2016:2715196

    Article  PubMed  PubMed Central  Google Scholar 

  • Pott Godoy MC, Tarelli R, Ferrari CC, Sarchi MI, Pitossi FJ (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain 131:1880–1894

    Article  PubMed  Google Scholar 

  • Sabat R, Grutz G, Warszawska K, Kirsch S, Witte E, Wolk K, Geginat J (2010) Biology of interleukin-10. Cytokine Growth Factor Rev 21:331-344

  • Sanchez B, Relova JL, Gallego R, Ben-Batalla I, Perez-Fernandez R (2009) 1,25-dihydroxyvitamin D3 administration to 6-hydroxydopamine-lesioned rats increases glial cell line-derived neurotrophic factor and partially restores tyrosine hydroxylase expression in substantia nigra and striatum. J Neurosci Res 87:723–732

    Article  CAS  PubMed  Google Scholar 

  • Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10:170-181

  • Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2006) Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-alpha. FASEB J 20:670–682

  • Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37:510–518

    Article  CAS  PubMed  Google Scholar 

  • Tarazi FI, Sahli Z, Wolny M, Mousa SA (2014) Emerging therapies for Parkinson’s disease: from bench to bedside. Pharmacol Ther 144:123-133

  • Teismann P, Tieu K, Cohen O, Choi DK, Wu DC, Marks D, Vila M, Jackson-Lewis V, Przedborski S (2003) Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 18:121–129

    Article  PubMed  Google Scholar 

  • Unsicker K, Suter-Crazzalora C, Krieglstein K (1996) Growth factor function in the development and maintenance of midbrain dopaminergic neurons: concepts, facts and prospects for TGF-fl. CIBA Found Symp 196:70–80

    CAS  PubMed  Google Scholar 

  • Varnum MM, Ikezu T (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp 60:251–266

    Article  CAS  Google Scholar 

  • Verma R, Kim JY (2016) 1,25-dihydroxyvitamin D3 facilitates M2 polarization and upregulates TLR10 expression on human microglial cells. Neuroimmunomodulation 23:75–80

    Article  CAS  PubMed  Google Scholar 

  • Walsh S, Finn DP, Dowd E (2011) Time-course of nigrostriatal neurodegeneration and neuroinflammation in the 6-hydroxydopamine-induced axonal and terminal lesion models of Parkinson’s disease in the rat. Neuroscience 175:251–261

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chiang YH, Su TP, Hayashi T, Morales M, Hoffer BJ, Lin SZ (2000) Vitamin D(3) attenuates cortical infarction induced by middle cerebral arterial ligation in rats. Neuropharmacology 39:873–880

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Wen LL, Huang YN, Chen YT, Ku MC (2006) Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des 12:3521–3533

    Article  CAS  PubMed  Google Scholar 

  • Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150:963–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Fu Q, Cheng L, Zhai M, Wu W, Huang L, Du G (2014) Inflammatory response in Parkinson’s disease (review). Mol Med Reports 10:2223-2233 

  • Yin K, You Y, Swier V, Tang L, Radwan MM, Pandya AN, Agrawal DK (2015) Vitamin D protects against atherosclerosis via regulation of cholesterol efflux and macrophage polarization in Hypercholesterolemic swine. Arterioscler Thromb Vasc Biol 35:2432–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Gattoni-Celli M, Zhu H, Bhat NR, Sambamurti K, Gattoni-Celli S, Kindy MS (2011) Vitamin D3-enriched diet correlates with a decrease of amyloid plaques in the brain of AbetaPP transgenic mice. J Alzheimers Dis 25:295–307

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mrs. Mary V. Pragnell for her linguistic assistance. This study was in part supported by found from the “Dottorato di Ricerca in Morfobiologia Applicata e Citometabolismo dei Farmaci”, University of Bari, Italy; by a grant from the University of Salento, Lecce, Italy; by a grant of Foggia University (Borsa di Studio Montel 2010), Foggia, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Antonietta Panaro.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Rosa Calvello and Antonia Cianciulli contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvello, R., Cianciulli, A., Nicolardi, G. et al. Vitamin D Treatment Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in an Animal Model of Parkinson’s Disease, Shifting M1 to M2 Microglia Responses. J Neuroimmune Pharmacol 12, 327–339 (2017). https://doi.org/10.1007/s11481-016-9720-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-016-9720-7

Keywords

Navigation